Signature¶
-
class
pylayers.antprop.signature.
Signature
(sig)[source]¶ Bases:
pylayers.util.project.PyLayers
,object
class Signature
seq : list of interaction point (edges (>0) or vertices (<0) [int] typ : list of interaction type 1-R 2-T 3-D [int] pa : tail point of interaction segment (2xN) ndarray pb : head point of interaction segment (2xN) ndarray pc : center point of interaction segment (2xN) ndarray
Methods Summary
backtrace
(tx, rx, M)backtrace given image, tx, and rx
ev
(L)evaluation of Signature
ev2
(L)evaluation of Signature
evf
(L)evaluation of Signature (fast version)
evtx
(L, tx, rx)evaluate transmitter
image
(tx)compute the tx’s images with respect to the signature segments
info
()show
(L, tx, rx, **kwargs)Parameters
sig2ray
(L, pTx, pRx)convert a signature to a 2D ray
unfold
()unfold a given signature
Methods Documentation
-
backtrace
(tx, rx, M)[source]¶ backtrace given image, tx, and rx
- txndarray (2x1)
transmitter
- rxndarray (2x1)
receiver
- Mndarray (2xN)
N image points obtained using self.image method
- isvalidbool
True if the backtrace ends successfully
- Yndarray (2 x (N+2))
sequence of points corresponding to the seek ray
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from pylayers.gis.layout import * >>> from pylayers.antprop.signature import * >>> L = Layout('defstr.ini') >>> s = Signature(seq) >>> tx = np.array([760,1113]) >>> rx = np.array([762,1114]) >>> s.ev(L) >>> M = s.image(tx) >>> isvalid,Y = s.backtrace(tx,rx,M)
>>> fig,ax = L.showG('s',labels=1,aw=1,axes=1) >>> l1 = ax.plot(tx[0],tx[1],'or') >>> l2 = ax.plot(rx[0],rx[1],'og') >>> l3 = ax.plot(M[0,:],M[1,:],'ob') >>> l4 = ax.plot(Y[0,:],Y[1,:],'xk') >>> ray = np.hstack((np.hstack((tx.reshape(2,1),Y)),rx.reshape(2,1))) >>> l5 = ax.plot(ray[0,:],ray[1,:],color='#999999',alpha=0.6,linewidth=0.6) >>> plt.show()
For mathematical details see :
@INPROCEEDINGS{6546704, author={Laaraiedh, Mohamed and Amiot, Nicolas and Uguen, Bernard}, booktitle={Antennas and Propagation (EuCAP), 2013 7th European Conference on}, title={Efficient ray tracing tool for UWB propagation and
localization modeling},
year={2013}, pages={2307-2311},}
-
ev
(L)[source]¶ evaluation of Signature
L : Layout
This function converts the sequence of interactions into numpy arrays which contains coordinates of segments extremities involved in the signature.
At that stage coordinates of extremities (tx and rx) is not known yet
members data
pa tail of segment (2xN) pb head of segment (2xN) pc the center of segment (2xN)
norm normal to the segment if segment in case the interaction is a point the normal is undefined and then set to 0.
-
ev2
(L)[source]¶ evaluation of Signature
L : Layout
This function converts the sequence of interactions into numpy arrays which contains coordinates of segments extremities involved in the signature. At that level the coordinates of extremities (tx and rx) is not known yet.
members data
pa tail of segment (2xN) pb head of segment (2xN) pc the center of segment (2xN)
norm normal to the segment if segment in case the interaction is a point the normal is undefined and then set to 0
-
evf
(L)[source]¶ evaluation of Signature (fast version)
L : Layout
This function converts the sequence of interactions into numpy arrays which contains coordinates of segments extremities involved in the signature.
members data
pa tail of segment (2xN) pb head of segment (2xN)
-
evtx
(L, tx, rx)[source]¶ evaluate transmitter
L : Layout tx : np.array (2xN) rx : np.array (2xM)
DEPRECATED
-
image
(tx)[source]¶ compute the tx’s images with respect to the signature segments
tx : numpy.ndarray
M : numpy.ndarray
-