UWBMeasure¶
-
class
pylayers.measures.mesuwb.UWBMeasure(nTx=1, h=1, display=False)[source]¶ Bases:
pylayers.util.project.PyLayersUWBMeasure class
- tdd
Time domain deconv data
- fdd
Freq domain deconv data
Date_Time LQI Operators RAW_DATA CAL_DATAip Tx_height Tx_position
info() : show() emax() etot() TDoA() Fingerprint() fp() : calculate fingerprint TOA()
Methods Summary
Efirst([Tint, sym, dB])calculate energy in first path
Emax([Tint, sym, dB])calculate maximum energy
Epercent()Etau0([Tint, sym, dB])calculate the energy around delay tau0
Etot([toffns, tdns, dB])Calculate total energy for the 4 channels
ecdf([Tnoise, rem_noise, in_positivity, …])calculate energy cumulative density function
fp([alpha])build fingerprint
info()outlatex(S)measurement output latex
show([fig, delay, display, col, xmin, xmax, …])show measurement in time domain
tau_Emax()calculate the delay of energy peak
tau_moy([display])calculate mean excess delay
tau_rms([display])calculate the rms delay spread
taumax()tdelay()build an array with delay values
toa_cum(n[, display])threshold based toa estimation using cumulative energy
toa_max([n, display])descendant threshold based toa estimation
toa_max2()calculate toa_max (meth2)
toa_new([display])descendant threshold based toa estimation
toa_th(r, k[, display])threshold based toa estimation using energy peak
toa_win([n, display])descendant threshold based toa estimation
Methods Documentation
-
Efirst(Tint=1, sym=0.25, dB=True)[source]¶ calculate energy in first path
Tint : float sym : float dB : boolean
-
Emax(Tint=1, sym=0.25, dB=True)[source]¶ calculate maximum energy
Tint : float sym :float dB : boolean
-
Etot(toffns=0.7, tdns=75, dB=True)[source]¶ Calculate total energy for the 4 channels
- toffnsfloat
time offset for selecting time window
- tdnsfloat
time duration of the window
This function gets the total energy of the channel
from [tau_0 + tofffset , tau_0 + toffset +tduration ]
-
ecdf(Tnoise=10, rem_noise=True, in_positivity=False, display=False, normalize=True, delay=0)[source]¶ calculate energy cumulative density function
Tnoise rem_noise in_positivity display normalize delay
-
fp(alpha=0.1)[source]¶ build fingerprint
- alphafloat
alpha is a quantile parameter for taum and taurms calculation
-
show(fig=[], delay=array([[0], [0], [0], [0]]), display=True, col=['k', 'b', 'g', 'c'], xmin=0, xmax=100, C=0, NC=1, typ='v')[source]¶ show measurement in time domain
delay : np.array(1,4) display
optional
- col
optional
- xmin
optional
- xmax
optional
- C
optional
- NC
optional
-
tdelay()[source]¶ build an array with delay values
- t2np.array
[tau0 , tau_th , toa_cum , toa_max , tau_moy ,tau_rms, tau_moy+tau_rms]
-
toa_cum(n, display=False)[source]¶ threshold based toa estimation using cumulative energy
n : int display : boolean