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ABSTRACT 

Wireless Body Area Networks (WBAN), which currently benefit from the emergence of 

Ultra Low Power radio technologies, may be massively disseminated in the near future, 

as distributed elements of a more global heterogeneous communication architecture. 

Besides, user-centric and context-aware services have been progressing significantly for 

the last past years, requiring e.g., that the location information is delivered on the mobile 

user side, with a limited access to the infrastructure. In the context of wearable networks, 

new cooperative communication schemes, involving peer-to-peer radio links between 

mobile nodes or terminals, provide natural interactions at the body scale (i.e. on-body 

cooperation) and/or between mobile users (i.e. body-to-body cooperation). These 

cooperative links are not only expected to improve data rates, communication 

robustness or coverage, but they shall also enable to retrieve relative range 

measurements, based on the Round Trip - Time of Flight (RT-ToF) or Received Signal 

Strength Indicator (RSSI) of transmitted signals. The CORMORAN project aims at 

investigating such cooperation mechanisms in and between body area networks, mostly 

for motion capture/detection and navigation-oriented applications. Determining the 

adequate cooperation level and modes can help to achieve a precise radiolocation of on-

body nodes and/or pedestrians, as well as an optimal management of the 

communication quality of service at the protocol level, while taking into account the 

specific characteristics of such wearable networks (e.g., in terms of mobility). 

This document, entitled “Design of Cooperative Location Algorithms (Initial 

Document)” (D3.2), summarizes the work carried out for the first half of the project 

duration in the frame of sub-tasks 3.2. More specifically, it accounts for the design and 

preliminary simulation-based validation of WBAN localization algorithms. The latter 

aim at addressing both Large Scale Individual Motion Capture (LSIMC) and Coordinated 

Group Navigation (CGN) application needs identified in sub-task T1.1. First of all, 

parametric WBAN-specific ranging error models based on real channel measurements 

are described, characterizing different kinds of cooperative WBAN links (i.e., on-body, 

off-body and body-to-body) for two key radio low-consumption radio technologies (i.e., 

Impulse Radio - Ultra Wideband (IR-UWB) and narrow band (NB) at 2.45GHz). Then 

estimation algorithms fed by on-body range measurements are proposed so as to 

retrieve the relative positions of on-body nodes in local body-strapped coordinate 

systems. These solutions include centralized/synchronous and 

decentralized/asynchronous variants of Multi-Dimensional Scaling (MDS) thus offering 

gradual levels of complexity and susceptibility to latency. On this occasion, it is shown 

that introducing a priori heuristics related to the WBAN deployment (e.g., physical body 

dimensions, existence of fixed-length links under mobility, censoring of peripheral 

nodes…) can help to significantly reduce estimation errors.  One step further, joint 

single-user navigation and motion capture capabilities are also enabled within a 2-step 

approach, which combines the previous relative positioning techniques at the body scale 

with additional transformation operations relying on off-body links with respect to 

external anchors. It is also shown that missing and/or outlier measurements caused by 

body shadowing could be mitigated through local graph reconstructions. Finally, 
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regarding body-to-body cooperation in the context of group navigation, very 

preliminary results are provided. In particular, the effects on positioning of RSSI-based 

measurement outliers in typical indoor environments are first characterized, before 

being mitigated through advanced link selection based on global Maximum Likelihood 

(ML) criteria. 
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1. INTRODUCTION  

This document is related to the subtask 3.2 of the CORMORAN project. This subtask focused 

on investigating and evaluating localization and tracking algorithms for both motion capture 

and group navigation applications.  

 

Wireless Body Area Networks (WBAN) can indeed offer intrinsic motion capture/detection 

capabilities through peer-to-peer ranging and on-body nodes positioning, but also improved 

navigation means by means of body-to-body and/or off-body links, by relying uniquely on 

transmitted signals and data packets.  

 

In the recent literature however, most WBAN radio models are still focused on on-body 

channel characterization from a pure communication-oriented perspective. Besides, in the 

field of cooperative WBAN localization, most of the algorithmic investigations carried out so 

far still consider unrealistic synthetic ranging errors based on Time of Arrival (TOA) 

estimation, hence biasing the evualation of localization performance. In particular, no ranging-

oriented parametric models have been proposed to realistically account for dynamic on-body, 

off-body and body-to-body links, apart from conventional indoor representations (i.e. 

regardless of the WBAN context). Thus in this deliverable, we first try to characterize WBAN-

based radiolocation metrics and related errors over various kinds of single links (on-body, off-

body, body-to-body) out of real WBAN channel measurements. 

 

Applying cooperative localization in the WBAN context also imposes to overcome numerous 

other challenges. Wearable sensors are indeed subject to drastic constraints in terms of 

complexity and consumption, but also to very specific mobility patterns. Most algorithms 

addressing WBAN localization in the recent literature consider only fully centralized resources 

and synchronous calculi, which may not be totally compliant with real-time constraints under 

human mobility. Moreover, they often under-exploit the available potential of mesh topologies 

by sticking with non-cooperative links (i.e. uniquely with respect to fixed anchors). A few 

solutions also consider a priori parametric models, which may be incompatible with the 

location-dependent and “unpredictable” mobility patterns experienced by on-body nodes 

under arbitrary deployment. In this deliverable, we thus describe various algorithmic 

solutions based on Muti-Dimensional Scaling (MDS) to localize on-body wireless nodes 

relatively to a body-strapped Local Coordinate System (LCS), while aiming at better adaptability 

to local nodes velocities and benefitting from the physical specificities of the cooperative 

WBAN context. More specifically, one first proposal is to introduce coarse a priori geometric 

constraints relying e.g., on the prior knowledge of minimal and maximal feasible distances in 

case of radio connectivity (given the finite dimensions of the full body). In another approach, 

the locations of mobile on-body nodes are asynchronously estimated using information from 

their 1-hop neighbors, thus providing better immunity against latency effects under realistic 

protocol constraints. Fixed-length links (e.g. between the hand’s wrist and the elbow under 

mobility) can also be incorporated as a priori geometric constraints, hence limiting the number 

of required on-line measurements, while still benefitting from the mesh cooperative potential. 

Finally, censoring and/or scheduling of the most demanding nodes when updating estimated 
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positions mitigate error propagation among the nodes. For all these on-body positioning 

techniques, the intention is also to verify if and to which extent it is theoretically feasible to 

address aggressive targeted on-body levels of precision based on currently available on-body 

radio technologies.  

 

Then, in a heterogeneous WBAN context involving both on-body links and off-body links with 

respect to external anchors, we put forward a 2-step scheme, where the positions of on-body 

nodes are preliminary estimated relatively to the body scale, before being expressed into an 

absolute Global Coordinates System (GCS) after a set of transformations. This solution is 

compared with a second global solution localizing directly the nodes into the GCS using all 

the available body-to-body and off-body measurements.  

 

Finally, regarding body-to-body cooperation in the context of group navigation, very 

preliminary results are provided and discussed. RSSI-based measurement outliers are 

characterized in typical indoor environments are first characterized based on real field 

experiments. Then various link selection strategies aiming at mitigating the effect of outliers 

on positioning, including global Maximum Likelihood (ML) criteria, are evaluated and 

compared. 

 

This document is structured as follows: in Section 2, we recall the characteristics and 

challenges of two main application scenarios, namely CGN and LSIMC. Then in Section 3, we 

characterize WBAN-based single-link radiolocation models and we briefly discuss related 

ranging errors for further evaluation. In Section 4 and 5, we describe and evaluate positioning 

and tracking algorithms for LSIMC and CGN, respectively. Finally, Section 6 discloses 

perspectives for the next and final version of this deliverable (D3.5). 
 

2. REMINDER OF TARGET APPLICATIONS AND RELATED 

ASSUMPTIONS 

In this section, we first recall the needs, definitions and challenges of the main applicative 

scenarios of interest, already specified in details in D1.1 [CORMORAN_D1.1].  

2.1. LARGE-SCALE INDIVIDUAL MOTION CAPTURE (LSIMC) 

2.1.1 RELATIVE ON-BODY NODES RANGING  

In this first sub-scenario, one considers a set of mobile wireless devices placed on one single 

body (under arbitrary deployment), with unknown positions. The objective is then uniquely 

to estimate the relative Euclidean distances separating those nodes. Accordingly, at each time 

stamp, one can retrieve a relative body topology, independently of the way the underlying 

nodes coordinates could be expressed or referenced (i.e. whatever their reference coordinate 

system). Only the relative range information is of interest. This mode shall remain marginal in 

our context, since most of the targeted use cases would require that the nodes coordinates are 

explicitly expressed into a local (i.e. body-strapped) system or into a global absolute system 

(likely external to the body), as seen in the two following paragraphs. 
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2.1.2 RELATIVE ON-BODY NODES POSITIONING 

In this second sub-scenario, we consider a set of wireless devices placed on a body, which can 

be classified into two categories. Simple mobile nodes with unknown positions (still under 

arbitrary deployment) must be located relatively to reference anchor nodes, which are 

attached onto the body at known and reproducible positions, independently of the body 

attitude and/or direction (e.g. on the chest or on the back). A set of such anchors can thus define 

a Cartesian Local Coordinates System (LCS) under mobility, which remains time-invariant (i.e. 

as expressed in the LCS) under body mobility. The estimated coordinates of the mobile nodes 

are then expressed into this LCS. This functionality is also occasionally depicted as “Nodes 

positioning at the body scale”. 

2.1.3 ABSOLUTE ON-BODY NODES POSITIONING 

This last sub-scenario is the same as the previous one, but the coordinates system used to 

express the estimated on-body mobile nodes locations is no more body-strapped but external 

to the body.  

 

 

(a) 

 

(b) 

 

(c) 

 
Figure 2.1: Examples of relative on-body nodes ranging (a), relative on-body nodes positioning (b) 

and absolute on-body nodes positioning (c) configurations for large-scale single-user motion 

capture applications. 

 

In this framework, one may thus consider as anchor nodes, some fixed elements of 

infrastructure (e.g. beacons/landmarks, base stations, access points or gateways) disseminated 

at fixed known locations in the environment. Accordingly, the coordinates of the nodes placed 

on the body chest or back, which used to be time-invariant in their LCS, shall now vary in a 
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Global Coordinates System (GCS) under pedestrian mobility. They directly depend on the body 

attitude, as well as on the motion direction and/or speed. By default, this sub-scenario, which 

makes sense since we claim a “large-scale” nomadic service in comparison with video systems 

that operate in more restricted geographical areas (due to the presence of relatively dense and 

heavy pieces of infrastructure), will be the preferred motion capture sub-scenario in the 

following. It may also be viewed as a combination of relative motion capture (i.e. at the body 

scale) and classical single-user navigation capabilities. Finally, note that defining the on-body 

nodes locations into a LCS may be still required here, as an intermediary step of the 

calculations. 

 

2.1. COORDINATED GROUP NAVIGATION (CGN) 

2.1.1 RELATIVE BODY-TO-BODY RANGING IN A GROUP 

In this first navigation sub-scenario, people wearing several on-body wireless sensors and 

forming a group of mobile users must localize them-selves with respect to other mates in the 

very group. The inter-body range information is required, that is to say, only the relative group 

topology, independently of the actual locations (and orientations) in the room or in a building. 

Accordingly, no external anchor nodes would be required in this embodiment. 

 

2.1.2 ABSOLUTE BODY POSITIONING IN A GROUP 

In a second preferred sub-scenario, which is intended in a more classical pedestrian navigation 

sense, one must retrieve the absolute coordinates of several users belonging to the same mobile 

group, with respect to an external GCS. This shall imply the use of fixed and known elements 

of infrastructure around, like previously within large-scale motion capture applications based 

on absolute on-body nodes positioning. In comparison with other State of the Art navigation 

solutions, the presence of multiple wearable on-body nodes (i.e. in the WBAN context) is 

expected to enhance navigation performance by providing spatial diversity and 

measurements redundancy (i.e. over off-body links with respect to the infrastructure and/or 

over inter-WBAN/body-to-body links with respect to other mobile neighbours), and possibly, 

further cooperative on-body information exchanges (i.e. through intra-WBAN links). 

 

Without loss of generality, note that navigation-oriented scenarios will aim at retrieving 

mostly the “macroscopic” position of the body, but note the on-body-nodes in details… Hence, 

a reference point on the body shall be chosen to account for this average position (e.g. the 

geometric center of the body torso or the barycenter of all the on-body nodes). 
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(a) 

 

(b) 

 

 

Figure 2.2: Examples of relative body-to-body ranging (a) and absolute body positioning (b) 

configurations for coordinated group navigation applications. 
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2.2. SUMMARY OF APPLICATION NEEDS 

Table 2-1 summarizes the main needs for the two identified classes of application. 
 

 

 
Table 2-1 : Summary of application needs in both large-scale individual motion capture (Within 

low precision and very high precision modes) and group navigation applications1. 

 

In D1.1 [CORMORAN_D1.1], possible cooperative WBAN deployment options are also 

reported, including heterogeneous configurations. 

 

3. WBAN-BASED SINGLE-LINK RANGING MEASUREMENTS 

In this section, we analyse possible models and parameters characterizing ranging errors 

based on the two main foreseen WBAN radio technologies, namely Impulse Radio – Ultra 

Wideband (IR-UWB) for on-body, body-to-body and off-body links on the one hand, and 

Narrow-Band (NB) at 2.4 GHz for body-to-body and off-body links on the other hand. In 

particular, we describe an original on-body error model, based on IR-UWB ToA estimation 

and exploiting real dynamic channel measurements over two representative on-body links 

                                                      
1 An : Ankles ; He : Head ; Wr : Wrist ; To: Torso; Hi: Hips; Lg: Legs; Ba: Back; Sh: Shoulders; Kn: Knees; Bd: Bends 
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and frequency bands [HDER_ACM13], [HDER_BOD12]. Then we discuss theoretical ranging 

error models over off-body and body-to-body links, respectively for NB RSSI estimation and 

IR-UWB TOA estimation in the presence of multipath. The latter error characterizations are 

fed with realistic empirical parameters issued from different WBAN channel measurement 

campaigns. They will be partly used for evaluation purposes in further studies regarding 

WBAN-based positioning and tracking algorithms, as seen in the following sections 4 and 5. 

 

3.1. EMPIRICAL MODELLING OF ON-BODY RANGING ERRORS BASED ON IR-UWB 

TOA ESTIMATION 

We present here a first model accounting for dynamic intra-WBAN ranging errors based on 

IR-UWB ToA estimation in the [3.1, 5.1]GHz and [3.75, 4.25]GHz frequency bands. The latter 

is compliant with one mandatory band imposed by the IEEE 802.15.6 standardization group. 

Relying on time-variant on-body channel measurements, we draw our ranging error model as 

a mixture-based conditional probability density function, taking into account i) dynamic Signal 

to Noise Ratio (SNR) variations and ii) channel obstruction conditions, i.e. Line Of Sight (LOS) 

vs. Non Line Of Sight (NLOS), experienced over representative on-body links while walking. 

The evolution of density parameters is thus characterized as a function of these channel and 

SNR configurations, illustrating e.g. missed/false path detection effects under low SNR.  

3.1.1 EMULATED TOA ESTIMATES BASED ON REAL MEASUREMENTS 

• Considered TOA Estimators 

Out of received noisy multipath signal, the TOA estimation step aims at determining the 

arrival time of the direct multipath component that would be ideally received in a free space 

propagation case. The quality of TOA estimation depends on multiple factors such as the 

emitted pulse energy (and hence, the received pulse energy) in comparison with the noise 

floor, multipath fading effects (and hence, the occupied bandwidth), or signal obstructions. It 

is thus possible to generate false alarms due to early noisy realizations or to miss the direct 

path due to poor SNR conditions and/or severe NLOS blockages. The latter tend to increase 

the apparent length of the direct path or they can even cause its absence, leading to 

overestimated ranges. 

 

In this TOA estimation context, Matched Filtering (MF), which is one of the most basic reception 

techniques, is generally characterized by relatively low complexity and low consumption, as 

claimed in [HS_PhD_10], [SENB_10]. Since WBAN nodes are strongly constrained with this 

respect, MF is also a rather convenient solution in our context. ToA estimates are thus obtained 

through strongest peak detection, by looking for the time shift that maximizes the cross-

correlation function between the received signal and a local template, which theoretically 

corresponds to the unitary transmitted waveform.  

 

On the other hand, the First Arrival Path (FAP) detection scheme simply consists in 

preliminarily estimating the Channel Impulse Response (CIR) out of the received signal, and 
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associating the first estimated multipath component (i.e. among all the resolved paths) with 

the estimated distance (or equivalently Time of Flight) between the transmitter and the 

receiver. Unfortunately, in NLOS conditions, this FAP may suffer from significant power 

attenuation that makes it subject to missed/late detections or early false alarms, thus 

conducting to large estimation errors and, more generally speaking, to a higher dispersion of 

the measurements. 

• Modeling Methodology 

We consider the dynamic radio channels associated with the Hip-Chest and Hip-Wrist links 

(as representative WBAN links with different behaviour) from a past measurement campaign 

described in [EO_09], where the total recording time was 4 sec and consecutive temporal 

channel responses were collected every 20 ms in the band [3.1, 5.1]GHz. The measurements 

were performed under moderate human walk mobility in a typical indoor environment, 

resulting in a set of 200 time-stamped channel responses. For each response, multipath 

components were extracted using a CLEAN-like high resolution-algorithm [DK_07] in the 

bands [3.1, 5.1]GHz and [3.75, 4.25]GHz.  

 

Then in order to synthesize a realistic received signal out of the extracted CIRs, as a function 

of a given initial SNR level and occupying a given bandwidth, a reference template waveform 

has been applied. Gaussian-windowed sine waves have thus been generated in the [3.1, 

5.1]GHz and [3.75, 4.25]GHz bands, the latter being in compliance with one mandatory band 

specified by the IEEE 802.15.6 band-plan. Those templates are subsequently convolved with 

the CIRs previously extracted out of real measurements, and an AWGN process with a two-

sided power spectral density N0 (i.e. N0 = -154 dBm/Hz) is filtered into the considered signal 

band and the convolved useful signal is scaled in energy so as to respect the priori SNR level 

at an arbitrary time stamp t0 (here chosen as the time offering the highest channel gain).  

 

At each observation time-stamp, ToA estimates are thus issued from each synthesized noisy 

received signal, using the two kinds of estimators described in the previous section, namely 

the strongest path detection based on matched filtering and the first path detection. In our 

case, the search temporal window has a time length of 5 ns like in [DRBT_07], [SENB_10]. This 

duration is sufficient in WBAN applications to observe an arrival time corresponding to the 

maximum distance between two synchronized nodes placed on the same body. Thus we 

discard too large excess delays. The second FAP detection relies on the results produced by 

the CLEAN-like channel estimation approach [DK_07]. 

 

The first Hip-Chest link is always assumed in LoS conditions, whereas the Hip-Wrist link 

varies dynamically, leading periodically and alternatively to LoS and NLoS conditions. In 

order to classify the obstruction conditions, the retained method is based on the power transfer 

function derived from measurements. During the initial communication-oriented 

measurement campaign reported in [EO_09], the real distance between nodes was not 

collected, since measurements were not carried out for localization purposes. However, in first 

approximation, one can try to extract this distance out of the measured ToA in time-stamp 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  15/64 

regions when the LOS conditions are clearly identified and with very high SNR for the 

synthetic received signals in the largest bandwidth [3.1, 5.1]GHz. Practically, the first Hip-

Chest link is considered as fixed and the reference distance extraction is directly realized by 

averaging all the ToA measurements issued from MF estimation over the walk cycle to reduce 

ToA estimation errors appeared in presence of overlapping components. Nevertheless, for the 

second Hip-Wrist link, a smoothing process was performed in a sliding window whose length 

corresponds to 20 consecutive time-stamp samples (e.g. within 20x20ms=400ms). The true 

distance was subsequently interpolated over identified NLoS portions of time, assuming 

continuity of the true distance at LoS/NLoS boundaries but discontinuity for the smoothed 

version of the measured distance (obtained with the sliding window). Figure 3.1 show 

examples of obtained traces as a function of time-stamp at high SNR. 

 

A more detailed and complete description of the previous methodology is available in 

[HDER_ACM13], including multipath extraction out of real channel measurements, SNR-

dependent and bandwidth-dependent synthetic multipath re-generation with power scaling, 

application of ToA estimators and averaging/interpolations.  

 

 
Figure 3.1: Equivalent inter-node distance retrieved out of correlation-based ToA estimation without 

noise (blue) and fitted reference distance after averaging with a sliding window and splines 

interpolation over the detected NLoS time stamp region (red), for both Hip-Chest (top) and Hip-

Wrist links (bottom). 

 

3.1.2 MODELS AND PARAMETERS 

We now aim at statistically characterizing the obtained ToA-based ranging error observations 

in the [3.1, 5.1]GHz and [3.75, 4.25]GHz frequency bands, for the two kinds of on-body radio 

links. As previously mentioned, these models are conditioned on the channel obstruction 

status and on the reference SNR(t0). While running simulations, for each SNR(t0) value, 100 

independent noise process realizations are drawn for the walk cycle duration. Over these 
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realizations, for each frequency band, up to 20000 range measurements are then collected in 

LoS conditions for the Hip-Chest link, whereas 8600 and 3800 measurements are generated for 

the Hip-Wrist link, respectively in LoS and NLoS conditions.  

• LOS Model 

For the strongest path detection strategy based on matched filtering, conditioned on the LoS 

case, it appears that the step-wise empirical Cumulative Density Function (CDF) of emulated 

range measurements enjoys a rather satisfactory fit (in a least squares sense) to the CDF of a 

Gaussian random variable, whose standard deviation is on the order of the time base sampling 

period. Figure 3.2 shows examples for both simulation-based and model-based (with fitted 

parameters) LoS CDFs with SNR(t0) = 5dB in the band [3.1, 5.1]GHz.  

 

 
Figure 3.2: Empirical and model-based CDFs of ranging errors in both LoS and NLoS conditions 

with a matched filter (strongest path detection), with SNR(t0) = 5dB in the band [3.1, 5.1]GHz. 

 

 

Figure 3.3 and Figure 3.4 show respectively the variations of the mean and standard deviation 

of the corresponding Gaussian LoS model for both links and both bands, as a function of 

SNR(t0). As seen in Figure 3.3, the mean varies around zero, with very low relative values (in 

comparison with the nominal expected true range value), and hence, it can be considered as 

null in first approximation over the explored range of SNR(t0) values. Figure 3.4 shows that 

the behaviour of the standard deviation is asymptotically constant when SNR(t0) reaches a 

value of 10dB. At high SNRs, the strongest path detected through cross-correlation indeed 

coincides systematically with the direct path. The asymptotic error at high SNR thus depends 

mostly on the occupied bandwidth and centre frequency. To summarize, considering the 

tested Hip-Chest and Hip-Wrist links, the distribution of the ranging error through 

correlation-based TOA estimation in LoS conditions in the [3.1, 5.1]GHz and [3.75, 4.25]GHz 

bands can be simply modelled as a centred Gaussian distribution, with a standard deviation 
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depending on the bandwidth B and SNR(t0) (See the legend of Figure 3.4 for detailed model 

parameters). 

 
Figure 3.3: Mean of ranging errors in LoS conditions with a matched filter (strongest path 

detection), as a function of SNR(t0). 

 

 
Figure 3.4 : Standard deviations of ranging errors in LoS and NLoS conditions with a matched filter 

(i.e. strongest path detection), as a function of SNR(t0). 

 

As for ToA estimation through FAP detection, we observed that the resulting Probability 

Density Function (PDF) could be better represented by a mixture involving Gaussian and 

Uniform components. The Uniform distribution is weighted by the false alarm probability PF, 

which represents the probability to detect a wrong peak instead of the true FAP. PF is thus 

strongly affected by the threshold chosen within the FAP detection scheme (e.g. a smaller 

threshold obviously leads to higher PF), and hence, by the stopping rule in the underlying 
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high-resolution channel estimation algorithm. Figure 3.5 shows the variation of PF as a 

function of SNR(t0) for both links in the [3.1, 5.1]GHz frequency band. At high SNR(t0), the 

behaviour appears to be almost Gaussian and PF is approximately null. Figure 3.6 and Figure 

3.7 show respectively the variations of the mean and standard deviation of the corresponding 

Gaussian distribution component, for both links in the band [3.1, 5.1]GHz. These variations 

are compliant with the variations observed in the matched filter case in case of strongest path 

detection. This result shows that, in general LoS conditions, the FAP is rather in line with 

correlation-based ToA estimation. Thus one could reasonably apply systematic strongest path 

detection for lower complexity in such favourable conditions. 

 
Figure 3.5 : Variation of the false alarm probability for FAP ToA estimation (i.e. first path 

detection), using a threshold of 10 dB below the global absolute maximum of the estimated CIR, in 

LoS conditions, in the band [3.1, 5.1]GHz, as a function of SNR(t0). 

 

 
Figure 3.6 : Mean of ranging errors for FAP ToA estimation (i.e. first path detection), in LoS 

conditions in the band [3.1, 5.1]GHz, as a function of SNR(t0). 
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Figure 3.7 : Comparison between the standard deviations of ToA-based ranging errors using a FAP 

ToA estimator (i.e. first path detection using a threshold of 10 dB below the global absolute 

maximum of the estimated CIR) and a strongest correlation peak ToA estimator, in LoS conditions, 

in the band [3.1, 5.1]GHz, as a function of SNR(t0). 

 

• NLOS Model 

In NLoS conditions (i.e. under body shadowing), the best fit has been obtained to a mixture-

based model involving Gaussian and Uniform components. Figure 3.2 shows examples of both 

the empirical and model-based NLoS CDFs at SNR(t0) = 5dB, in the [3.1, 5.1]GHz band. The 

corresponding conditional Probability Density Function (PDF) is then expressed as follows: 

 
 

where p(e) is the PDF of the random ranging error e in NLoS conditions, U(Tw) is a uniform 

distribution, whose temporal support Tw depends on the receiver observation window while 

performing ToA estimation through cross-correlation. Again, this window is chosen to enable 

detection within any intra-WBAN link after synchronization (e.g., considering typically a 

worst case distance of 1.5m, or equivalently 5 ns), ψ  is the weight of the uniform distribution, 

and G(µ,σ ²) is a Gaussian distribution with a mean µ and a variance σ ². The variation of 

those parameters in both bands of interest, as a function of SNR(t0) is represented in Figure 

3.4, Figure 3.8 and Figure 3.9. As shown on Figure 3.9, at low SNR(t0), the contribution of the 

uniform distribution component is high. This effect accounts for the distribution of the so-

called apparent path arrival determined through cross-correlation over the entire observation 

window (e.g. between 0 and 5ns), when the noise level is so high that it can cause frequent 

missed detections or false alarms. The uniform weight in the mixture then directly reflects the 

probability of having either a false alarm or a missed detection. However, at higher SNR(t0), 

the behaviour is almost Gaussian, where the ranging error is centred around a positive mean, 
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which can be interpreted as a positive bias caused by the obstruction of the direct path (and 

hence, its apparent length extension). 

 

As shown in Figure 3.4, at high SNR(t0) (i.e. larger than 10dB), in each operating band, the 

behaviour of the error standard deviation in LoS is similar to that of the Gaussian part of the 

mixture-based NLoS model, as the uniform weight is becoming quasi-null. Similar standard 

deviations means that the path detection performances are thus equivalently good in terms of 

dispersion in LoS and NLoS conditions, given the observed strongest path. However, it is 

worth keeping in mind that the apparent time of flight of the first observable path in NLoS 

cases is shifted independently of the path power, hence leading to a non-neglected ranging 

bias (i.e. besides random noise terms). The fact that the NLoS bias is approximately constant 

over SNR(t0) for a given band is also in line with the previous remarks. This very bias value, 

which seems to depend mostly on the occupied band, is rather hard to predict (as a 

deterministic parameter) and characterize further in practice. Hence, we recommend in our 

final ranging error model to assume this bias as a Uniformly distributed random variable, 

drawn once for all within a plausible range of a few tens of cm (i.e. with a realization that is 

valuable approximately constant over all the NLoS portions of one given walk cycle). 

 

 

 
Figure 3.8: Mean value associated with the Gaussian part of the ranging error mixture-based model 

in NLoS conditions, as a function of SNR(t0). 
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Figure 3.9: Weight of the Uniform part of the mixture-based ranging error model in NLoS 

conditions, as a function of SNR(t0). 

 

More complete tables with model parameters as a function of the bandwidth and SNR are 

available in [HamiePhD_13] for simulation purposes (i.e., to generate realistic traces of on-

body ToA-based ranging measurements under mobility), along with a discussion about the 

possibility to generalize the model to other on-body links. 

 

3.2. THEORETICAL MODELING OF OFF-BODY AND BODY-TO-BODY RANGING 

ERRORS BASED ON NARROW-BAND RSSI ESTIMATIONS 

In Narrow-Band (NB) RSSI-based ranging approaches, the best standard deviation is 

proportional to the ratio between the shadowing standard deviation and the path loss 

exponent. Intuitively, a high ratio indeed implies that the dependency of the decrease of the 

average received power as a function of the log-distance separating the transmitter and the 

receiver is no longer significant nor dominating in comparison with the shadowing dispersion 

(i.e. around this mean power). This would make the interpretation of RSSI readings more 

challenging from ranging perspective. Applying a Cramer Rao Lower bound (CRLB) expression 

for discussions, using recent experimental channel model parameters (i.e. path loss and 

shadowing parameters) obtained over off-body and body-to-body links, which have been 

specified in the Industrial Scientific & Medical (ISM) band at 2.45 GHz. 

3.2.1 OFF-BODY LINKS 

Off-body links involve two kinds of wireless devices. The first one is placed on the body and 

the second one belongs to the surrounding infrastructure, most likely set as an anchor in our 

localization problem. These links are thus likely asymmetric since on-body devices are subject 

to more drastic constraints in terms of transmission ranges and consumption, contrarily to 

elements of infrastructure. 
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Inspired from the off-body channel model in [RE_12], which has been specified at 2.45 GHz 

according to the IEEE 802.15.4 standard, the used RSSI model can be simplified by eliminating 

the fast fading components (i.e. considering that one would average over a sufficient number 

of consecutive RSSI readings for each pair-wise link in a real system). The RSSI model is thus 

similar to conventional models, all except but the body shadowing, which mainly (and 

somehow deterministically) depends on the body orientation with respect to the external 

node. In a few scenarios however, frank LoS and NLoS configurations have been tested, with 

the subject body respectively facing or giving his back to the external node. Table 3.1 

summarizes the corresponding parameters in an indoor environment for WBAN planar 

monopole antennas over two different specific links, namely with on-body nodes positioned 

on the heart or on the left hip of the subject body. 

 

On first remark is that the reference path loss is no longer unique but it rather strongly and 

adversely depends on both the on-body node's location and the antenna kind (depending on 

the antenna pattern). This is one more challenging point for off-body RSSI-based ranging. In 

other words, if this disparity cannot be treated a priori as a nuisance and additional source of 

randomness (e.g. as part of an extended "shadowing" modeling), this practically implies that 

the reference path loss (again, assumed known by RSSI-based ranging algorithms) would have 

to be preliminarily calibrated out, not only once for all with one single reference on-body node 

in a given environment, but for each of the possibly occupied on-body locations, what is 

particularly time consuming. Another remark is that the path loss exponent < 1 is very low in 

frank NLoS cases, whereas the measured power dispersion is large (on the order of 10 to 12 

dB) showing that the randomness of the multipath contributions globally removes the distance 

dependency. But in practical cases, LoS/NLoS configurations cannot be classified so easily into 

binary cases over off-body (or even over body-to-body) links but there is a continuum of body 

shadowing configurations, as a function of the subject orientation, depending if the body 

partially or totally obstructs the propagation of direct radio waves. In [RE_12] for instance, it 

has been shown that the power fluctuations observed over a full body rotation of 360° could 

be as large as 25 dB overall for a given on-body node's location (e.g. the hearth) and a given 

antenna (e.g. the planar monopole), regardless of the actual distance from the external node. 

In other words, from the RSSI-based ranging perspective, if the body shadowing term is still 

modeled as a Gaussian random variable after averaging over all the possible body 

orientations, with non-conditional statistics (i.e. regardless of LoS/NLoS), one could assume a 

standard deviation on the order of 4 dB or more. For illustration purposes, Table 3.2 reports 

the mean body shadowing values observed as a function of the body-to-external relative angle, 

over off-body NB links at 2.45 GHz for a planar monopole antenna and an on-body device 

placed on the heart. Considering similar results for the on-body device placed on the hip and 

for the same antenna, if one still wants to differentiate between LoS and NLoS cases, after 

partitioning respectively the results from [RE_12] into the LoS and NLoS angular domains and 

considering the respective shadowing dispersions over each domain, it is thus reasonable to 

state that the standard deviation of the body shadowing term is around 1.5 to 2 dB in LoS and 

3 dB in NLoS. Note that this representation would artificially lead to extra biases on the 

received power, accounting for the assumed centered regime around the mean of the body 
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shadowing, which can be calibrated out (and likely incorporated in the original reference path 

loss parameter, conditioned on the LoS/NLoS obstruction configuration). As such, these extra 

mean terms would however not play a role in the CRLB characterizing the RSSI-based ranging 

performance.  

 

To extend the discussion, additional illustrations for the best achievable RSSI-based ranging 

error standard deviation under LoS conditions, for an on-body device placed on the heart or 

on the hip indifferently, are available in [HamiePhD_13]. This standard deviation seems to be 

rather penalizing, even for the most favorable shadowing standard deviations on the order of 

1.5 dB, as extracted from [RE_12], but mostly at large transmission ranges in comparison with 

the actual distance (e.g., ranging deviation of more than 5 m at 50 m). Even more harmful 

effects due to NLoS conditions on off-body ranging performance are observable at shorter 

ranges, especially for typical shadowing standard deviations on the order of 3 dB, as extracted 

from [RE_12] (e.g., ranging deviation of more than 10 m at 30 m).  

 

As shown in Table 3.1, the path loss exponent appears to be much smaller in NLoS than LoS 

conditions, meaning that the deterministic dependency of the received power on the true 

distance is no more significant but start being dominated by shadowing randomness (i.e. all 

the more dominated since the standard deviation is large). Accordingly, it is hard to interpret 

the received power for ranging purposes and the corresponding single-link errors are expected 

to be even larger. These results seem to confirm that RSSI is not a meaningful location-

dependent metric in NLoS cases due to hard body shadowing. Hence, RSSI shall be mainly 

recommended as an indirect source of ranging information over NLoS off-body links and/or 

NLoS body shadowing mitigation techniques must be figured out, as seen e.g., in the following 

section 5. 

 

 
Table 3.1: Path loss model parameters over indoor off-body NB links at 2.45 GHz, according to 

[RE_12]. 

 

 
Table 3.2: Mean body shadowing as a function of the body-to-external relative angle, over off-body 

NB links at 2.45 GHz for a planar monopole antenna and an on-body device placed on the heart, 

according to [RE_12]. 
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3.2.2 BODY-TO-BODY LINKS 

In [REV_12], the authors have also proposed a new RSSI model for body-to-body links. Table 

3.3 summarizes the path loss parameters for a planar monopole antenna over two different 

specific body-to-body links in LoS and NLoS configurations, under the same relative angular 

definition as for off-body links (i.e. with one body experiencing a relative angle of 0° for LoS 

and 180° for NLoS, with respect to the second body). 

 

In first approximation, [REV_12] has also considered the body shadowing as a zero-mean 

Gaussian variable, characterizing the corresponding standard deviation at around 6 dB over 

different body-to-body links and regardless of the LoS/NLoS regime. However, the behavior 

of the body shadowing clearly looks bi-modal instead in our own interpretation and 

understanding. Each of the modes actually corresponds either to the LoS case or to the NLoS 

case, respectively centered around +5 or -5 dB, and with a standard deviation on the order of 

that previously extracted for off-body links, that is to say, around 2 dB in LoS and slightly 

larger than 3 dB in NLoS. In other words, and in first approximation, the same kind of error 

regimes could be reasonably applied for both off-body and body-to-body links. One could 

even observe worse cumulative effects in case of deep NLoS caused by double-body 

shadowing (the two bodies showing mutually their back). 

 

Similarly to the off-body discussion, it is possible to carry out a parametric CRLB-based study 

of the best ranging standard deviation achievable over body-to-body links, still assuming that 

the body shadowing is a Gaussian variable. In [HamiePhD13], for the two previous body-to-

body links under LoS and NLoS conditions, the same observations and conclusions as in the 

off-body case can thus be drawn for off-body links, preventing from exploiting RSSI readings 

for direct ranging purposes over single links in NLoS configurations due to body shadowing, 

unless mitigation techniques are employed.  

  

 
Table 3.3: Path loss parameters over indoor body-to-body N-B links at 2.45 GHz for a Tx on the 

Right Hip (first carrying body) and a Rx on the Heart or the Right Hip (second carrying body), 

according to [REV_12]. 

 

Resulting realistic RSSI-based ranging models specific to the WBAN context will be considered 

in the following sections as well. 
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4. WBAN-BASED MOTION CAPTURE ALGORITHMS 

4.1. LOCATING ON-BODY NODES IN A LOCAL COORDINATES SYSTEM 

4.1.1 COOPERATIVE LOCALIZATION THROUGH CONSTRAINED MULTIDIMENSIONAL 

SCALING AND SVD DECOMPOSITION 

As a very first step of our investigations, this subsection introduces a nominal centralized and 

synchronous solution (i.e., all the on-body nodes positions are estimated simultaneously) 

estimating the human motion based on a classical Multi-Dimensional Scaling (MDS). Different 

enhancements are also proposed to take in to account the WBAN specificities. 

• Basic LMDS 

Local MDS (LMDS) is a well-known localization technique enabling to retrieve some sensors’ 

locations, knowing only the relative distance between each pair of points. 

 

Conceptually, LMDS is divided in three stages: 

1- Distance estimation: collects and combines distance measurements into distance 

matrix 

2-  Pre-placement: produces a set of points according to the distance matrix 

3-  Restoration of the coordinate system: reestablish the coordinate system by changing 

the basis of the set of points produced in the previous stage. 

 

Consider a network comprising n sensors (e.g., in our case 41), with m-D positions Xi, i = 1...n, 

and X = [X1,X2, ...,Xn]T a n×m matrix collecting these positions (e.g., with m=3 in our application 

context). 

 

Let now D = [dij] be the n×n matrix of pair-wise distance measurements, where dij is the 

distance between on-body nodes Xi and Xj. The general goal of LMDS is to find an assignment 

to X that minimizes a cost function defined as: 

 

 
 

where δij  is the real distance between Xi and Xj. The cosine law subsequently gives: 

 
 

If all measurements were perfect (i.e., noise-free), a good way to solve the location problem 

would be to choose some X0 to be the origin of the coordinate system and construct the matrix 

B accordingly, as follows: 
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where X’ = X − X0. 

 

We could then determine X0 by taking an eigen decomposition of B into an orthonormal matrix 

of eigenvectors V and a diagonal matrix of the matching eigenvalues U, i.e. 

 

 
 

In real systems however, distance measurements are obviously affected by errors (See e.g., 

section 3). For this reason LMDS requires to use a special point in the center of the set {Xi}. This 

point is found by “double-centering” the squared matrix D2. B is thus given then by: 

 

 
where e is 1×n vector of ones. As before, the dimensionality is achieved by taking an eigen 

decomposition of B then, removing eigenvalues and eigenvectors. This is a safe operation since 

B is symmetric positive definite, and therefore it has n positive eigenvalues. 

 

 
 

Thus, the nominal LMDS provides a method for converting a complete matrix of erroneous 

distance measurements to a matching topology in a 2D or 3D coordinates system. 

• Proposed enhancements 

In order to improve the previous nominal LMDS technique in our specific WBAN context, we 

propose to follow two approaches. The first consists in using a part of the distance matrix (the 

most reliable components) and to reconstruct it. The second improvement introduces 

additional WBAN-specific constraints on the estimated distances used as inputs. This study 

and the related results are reported in one conference paper [MLU_ WPNC12]. 

SVD reconstruction: 

As previously seen in section 3, due to significant shadowing effects caused by the human 

body, the distance matrix may present erroneous values and even in some cases, unrealistic 

ones. Hence the idea here is to come up with an incomplete distance matrix first, containing 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  27/64 

only the most reliable values. The complete distance matrix, which is necessary as input to the 

LMDS algorithm (applied as a final step), must be reconstructed out of this incomplete version. 

 

The reconstruction algorithm is based on [DJMPVS_06] and the property that, in a 3D 

coordinate system, the rank of a distance matrix cannot exceeds 5. As a consequence, a set of 

10n judiciously chosen entries are likely sufficient to properly rebuild the distance matrix. 

 

For the sampling task, a general and realistic model is described in [DJMPVS_06], including a 

connectivity disk model setting pij ≈ 1 if dij < R and pij ≈ 0 otherwise.  Here R denotes the sensor 

radius and pij ∈[0, 1] denotes the probability that node i has successfully measured its exact 

distance to node j. Another assumption concerning the detection probability was pij > pε > 0 

for all i, j = 1...n, for some small positive constant pε. In other words, we assume that even 

distant far-away sensors have a very small but non-null probability of measuring the relative 

distance. 

 

We thus define the incomplete matrix of estimated relative distances by its entries, as follows: 

 
 

The question mark in the above formalism just denotes that the entry is unknown (i.e., 

incomplete part of the matrix). 

 

The reconstruction algorithm thus takes as input the previous incomplete distance matrix 

��	and, as a first step, we construct another matrix S with entries: 

 

 
 

where γij represents “the best guess” for the distance between i and j in case there is no 

detection over the link. In our simulations, this best guess is forced to the squared maximum 

connectivity radius R2. 

 

The next step is the construction of another matrix S5, which is the best rank 5 approximation 

to S, recalling that D has a rank at most 5 in practical cases. The very last step is to apply LMDS 

algorithm with S5 as input. 

Min-Max relative distance constraints 

Another way to improve the estimation results consists in adding constraints on estimated 

distances. Since the sensors are supposed to be disseminated on the body, not all the distances 

are physically allowed. For every single estimated distance, maximum and minimum limits 
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are then specified and the estimation results (i.e., after applying the previous modified LMDS) 

are compared to these a priori constraints. If the estimated relative distance exceeds these 

limits, the estimator is forced back to the maximum or minimum tolerated values. For this 

sake, two extreme cases are proposed. In the first case, we assume having details on every link. 

Accordingly, the maximum and minimum distances between each pair of sensors is supposed 

to be known a priori over a complete walk cycle. However in the second configuration, the a 

priori information is more general and we just suppose one overall maximum distance 

constraint to be known. These two kinds of constraints allow reducing the shadowing effect 

introduced by the human body on the estimated distances (in terms of both errors and missing 

packets/measurements). 

•  Performance Evaluation  

Tested scenario and simulation set-up 

The first proposed scenario consists in a moving human body with a deliberately large number 

of on-body sensors. The real coordinates of these sensors are given by a real C3D file while the 

estimated coordinates are the outputs of the modified LMDS algorithm, which takes as inputs 

the observed peer-to-peer distances based on RSSI (Radio Signal Strength Indicator) 

measurements. In these preliminary simulations, we used the path loss model proposed in the 

IEEE 802.15.6 standard relative to body-surface communications (i.e., CM3 - Channel Model 

3). Accordingly, the path loss is modeled by: 

 

 
 

where PL is the path loss in dB, a and b are coefficients of linear fitting, d(mm) is the distance 

between the Tx and the Rx, and N is a normally distributed random variable with zero mean 

and standard deviation σN, which models the shadowing effects. 

 

In CM3, these path loss parameters take the values reported in the Erreur ! Source du renvoi 

introuvable. 4.1 under the measurements conditions detailed in [RDGO_09]: 

 

 
Table 4.1: IEEE 802.15.6 CM3 path loss parameters used for on-body RSSI simulations 

 

In the previous model, the relative path gain represents the variation of the path loss with 

respect to the mean value of the standing scenario. In fact the transmitting antenna is placed 

on the navel while the receiving is on different positions on the body and the human subject 

takes different positions: standing, walking, up and down movements. Based on RSSI 
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measurements, the goal is to estimate, for each acquisition time frame, the location of these 

sensors so as to track the body’s motion. 

 

As presented before, the two first stages of LMDS algorithm give the coordinates in an 

arbitrary basis. Thus we assume a priori the knowledge of three sensors’ locations to 

reestablish the real absolute coordinates system in a global system. As it will be seen in the 

following, one option is to accurately localize these reference points with four IR-UWB devices 

in the environment (hence delivering 4 RT-ToF measurements, following a joint 

navigation/capture approach (See e.g., section 4.2) or to assume that those reference nodes are 

body-strapped (e.g., fixed at know distances on a piece of clothes). However, since it does not 

yet fall in the scope of these preliminary investigations, we herein just assume perfect 

knowledge of those reference positions first, mostly for evaluation purposes (and thus, 

without loss of generality in terms of relative on-body positioning performances).  

 

The LMDS algorithm was simulated using 126 frames, containing 41 points or sensors, from a 

real C3D file representing a walking human. For eigen/singular value decomposition (SVD) 

reconstruction, as an example, we consider a connectivity radius R = 500mm and a minimum 

detection probability pε= 0.01.  

 

Finally, for distance constraints, we consider the two cases: 

• Case 1: maximum and minimum distances is known a priori for each pair of sensors. 

• Case 2: the maximum distance that cannot be exceeded on any link, which is 2 m in our 

simulations. 

Simulation Results  

Our results are presented with snapshots of the human motions, where we show the real 

sensors coordinates and the positions estimated with nominal LMDS or with the proposed 

enhanced approaches. As an example, Figure 4.1 shows the results while applying LMDS on 

RSSI-based estimated distances and taking into account the body shadowing. The average 

position error per frame is thus around 217mm (calculated over one step equivalent to 126 

frames and 1000 independent noise process realizations for this step). As seen on the figure, 

the results are obviously not satisfactory for motion capture applications that would require 

very high precision. 
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Figure 4.1: Example of real frame of on-body nodes vs. estimated frame obtained with nominal 

RSSI-based LMDS. 

 

The beneficial effects of the first proposed improvement is represented on Figure 4.2 where 

one can generally observe a decrease of the estimation location errors, with an average error 

around 167mm, representing a 22% improvement that would still be insufficient to cover 

conventional motion capture needs. Figure 4.3 finally shows the obtained LMDS results with 

both SVD reconstruction and a priori distance constraints (within case 1). The latter figure then 

qualitatively shows significant performance gain, with an average positioning error per frame 

equal to 37mm, representing an improvement by 76% in comparison with conventional LMDS. 
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Figure 4.2: Example of real frame of on-body nodes vs. estimated frame obtained with RSSI-based 

LMDS and SVD reconstruction. 

 

 

 
Figure 4.3 : Example of real frame of on-body nodes vs. estimated frame obtained with RSSI-based 

LMDS, SVD reconstruction and a priori min-max distance constraints (Case 1). 

 

Under the same simulation conditions, we also represent on Figure 4.4 the CDF of positioning 

errors (over one walk cycle and over noise realizations) for different combinations of the three 

previous techniques. This figure shows that for conventional LMDS, errors are lower than 

250mm in 80% of time, whereas for LMDS with SVD reconstruction and distance constraints, 

this error is reduced down to 50mm. Comparing LMDS with SVD reconstruction and LMDS 
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with distance constraints only, the figure also shows that over all the error regimes, the method 

with a priori distance constraints provides better results, because clipping significantly 

reduces body shadowing effect. This tends to emphasize the importance of integrating WBAN 

specificities in the on-body positioning problem. 

 

Note that Figure 4.4 is obtained while considering only case 1 for setting a priori distance 

constraints (which are not always fully reliable). Similar results are shown on Figure 4.5 within 

case 2 with more limited a priori information. As shown, the improvement after setting such 

constraints is now less significant and even almost negligible after SVD reconstruction. This 

may be due to the fact that SVD reconstruction already implicitly enforces a limit on the 

distances. The main advantage, even if limited, is to remove unrealistic distance measurement 

outliers. The improvement strongly depends on the clipping strategies. However, the 

calibration information required in case 1 could be reasonably to obtain in specific application 

domains, e.g. in the medical field. 

 

 
Figure 4.4: CDF of positioning error for different localization techniques (case 1 for a priori 

distance constraints) 
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Figure 4.5: CDF of positioning error for different localization techniques (case 2 for a priori 

distance constraints) 

 

Overall, the preliminary results obtained with this first centralized/synchronous LMDS 

technique show that WBAN-specific heuristics are clearly beneficial into the on-body 

positioning problem. However, i) a large of on-body nodes is still assumed number (i.e. larger 

than the specifications in [CORMORAN_D1.1]), ii) the positions of the reference nodes 

forming the local coordinates system are assumed perfectly known and iii) Only RSSI-based 

range measurements have been considered so far.  

 

4.1.2 COOPERATIVE LOCALIZATION THROUGH CONSTRAINED DISTRIBUTED 

WEIGHTED MULTIDIMENSIONAL SCALING 

We now consider coupling a Constrained Distributed Weighted Multi-Dimensional Scaling 

algorithm (CDWMDS), which asynchronously estimates the nodes’ locations under geometric 

constraints related to fixed-length links, with new messages censoring, location updates 

scheduling and forced measurements symmetry. The initial motivation for adopting a 

decentralized approach here is to provide better immunity against the latency effects observed 

within classical centralized schemes under mobility, as well as better adaptability to local 

nodes’ velocities. In centralized approaches, the time elapsed between the collection of the 

distance measurements and the delivery of location estimates, while the body gesture can 

change rapidly during the measurements collection step, tends to degrade localization 

performances. Motivated by the possibility to mitigate these harmful latency effects, but also 

to operate under partial connectivity and/or under potentially large measurement errors, we 

thus herein seek to estimate the nodes’ positions using a distributed version of the LMDS. 

Another idea is to mitigate error propagation in such decentralized approaches (e.g. with 

respect to the fastest nodes), as well as harmful effects caused by the loss of critical packets. In 

line with developments carried out in T3.1 regarding Medium Access Control (MAC), we also 
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consider a beacon-aided Time Division Multiple Access (TDMA) scheme to suitably support 

both peer-to-peer ranging and decentralized positioning transactions under real-time 

constraints. Simulation results are provided to assess the performance of the proposed 

solution for various levels of connectivity and ranging quality, showing interesting gains on 

the average location error per node under moderate pedestrian mobility. Comparisons are 

finally provided with the initial centralized and synchronous LMDS algorithm described in 

section 4.1.1, which would require completing the matrix of measured distances under partial 

network connectivity.  

 

Contrarily to the centralized synchronous LMDS case, the wireless devices placed on the body 

are now classified into two categories. Simple mobile nodes with unknown positions (under 

arbitrary deployment) must be located relatively to reference anchors nodes, which are 

attached onto the body at known and reproducible positions, independently of the body 

attitude and/or mobility (e.g. on the chest or on the back). A set of such anchors define a stable 

local Cartesian system LCS, which remains unchanged under body mobility. Mobile nodes are 

then located in the LCS, still using peer-to-peer range measurements between pairs of devices 

(i.e. between mobile nodes or between nodes and fixed anchors) as in the previous LMDS case. 

Figure 4.6 shows a typical deployment scenario, where the LCS is obviously in movement and 

misaligned relatively to any global coordinate system GCS. In the following, Xi(t), i = 1...m 

represent the 3D known positions of the m anchors at time t defined into the LCS, where m 

should be equal or larger than 3. Xi(t), i = 1...n represent the true 3D unknown positions of the 

n mobile nodes deployed on the body, at time t. Let be a range measurement available at time 

t between nodes i and j and let l ij be a constant distance (i.e. constant over body mobility), 

which will be considered hereafter as a constraint. 

 

Given the set of all available pair-wise range measurements { })(
~

tdij , now based on e.g. IR-

UWB ToA estimation [GTGKMPS_05], [HDER_ACM13], based on existing constraints related 

to the body geometry and based on the known anchors’ locations, the problem that we want 

to solve is still to estimate the positions of the mobile nodes into the LCS. 
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Figure 4.6: Typical deployment scenario for the relative localization of on-body wireless nodes 

(grey circles) with respect to a body-strapped Local Coordinate System (LCS) defined by fixed 

anchors (red circles), along with constant-length link constraints (black lines). 

 

• Basic Distributed Weighted Multidimensional Scaling Algorithm (DWMDS) 

In [HDR_ACM13], [JH_PhD_13] (and partly with section 4.1.1 herein), the applicability and 

the main challenges of conventional multi-dimensional scaling (LMDS) into our specific 

cooperative WBAN context have been pointed out and discussed. 

 

As described in Costa et al. [CPH_06], the Distributed Weighted Multi-Dimensional Scaling 

(DWMDS) allows each node i with unknown coordinates to localize itself by minimizing a 

local cost function as follows: 
 

 
 

where )(ˆ tX i  is a vector containing the estimated 3D coordinates of node i, n and m are 

respectively the number of blind nodes with unknown locations (i.e. nodes must be localized) 

and the number of anchors placed on the body, )(ˆ tX  is the matrix whose columns contain the 

estimated positions for all the nodes at time t, δij(t) is a so-called observed/measured distance 
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between node i and j at t, ))(ˆ( tXdij  denotes the Euclidean distance between i and j built out 

of estimated coordinates, which is equal to 

 

 
 

wij(t) is a weight value, which reflects the connectivity and/or the accuracy of the range 

measurements between nodes i and j at time t, such that inaccurate measurements are down-

weighted in the cost function, )(tX i  is a vector with prior information about the position 

occupied by node i at time t, while r i(t) quantifies the reliability of this prior information. 

 

As described in Costa et al. [CPH_06], at each time t, the optimization problem is iteratively 

resolved to estimate the nodes’ positions. If )(ˆ )( tX k  is the matrix of the estimated positions at 

iteration k, node i derives its current coordinates update as follows: 
 

 
 

where 

 
 

and )](),...,([)( )()(
1

)( tbtbt k
mn

kk
i +=b  is a vector whose entries are given by 
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• Proposed Constrained Distributed Weighted Multidimensional Scaling Algorithm 

(CDWMDS) 

Fixed-length link constraints 

In [HDR_SENS12], two first improvements have been proposed to get the nominal DWMDS 

more adapted into the WBAN relative localization context.  

 

One first trivial point consists in taking the latest estimated position available for node i at time 

t − 1, as a priori information in its local current cost function, i.e. with )1(ˆ)( −= tXtX ii . Note 

that this is not a filtering or smoothing operation but the point is just to deliver a close-enough 

initial guess to ease faster convergence. This choice accounts for the bounded motion 

amplitudes of on-body nodes under human mobility. Still relatively to the LCS, this amplitude 

strongly depends on the node’s location itself.  

 

The second improvement consists in using coarse a priori information about the nodes 

deployment to benefit from geometrical characteristics of the human body. The idea is to 

introduce fixed links on the body (e.g. links between hand’s wrist and elbow) as constraints 

into the positioning problem. In particular, we use an approximated version of the true 

constant distances (e.g. learnt out of repeated measurements after averaging, during a 

preliminary calibration phase under mobility) as inputs, leading to a Constrained version of 

the DWMDS algorithm (CDWMDS). 

 

Table 4.2 shows the main differences between DWMDS and CDWMDS, where dij(t) is the 

instantaneous distance measured between nodes i and j at time t and l ij is an approximated 

version of the fixed distance between nodes i and j, which is considered as constant over time 

independently of the body gesture. Accordingly, no more ranging measurements are required 

for these links in the steady-state localization regime. Accuracy considerations apart, 

CDWMDS then theoretically tends to reduce the number of exchanged packets, and hence 

accordingly, latency and energy consumption. 

 

 
Table 4.2: Comparison b.t.w. DWMDS and CDWMDS algorithms in terms of input range 

information 

 

Another set of enhancements to the previous CDWMDS algorithm is proposed in 

[HDR_BOD12]. One first idea is to avoid error propagation in the retained asynchronous and 

decentralized approach, whereas another point consists in reducing the effects of outlier range 

measurements and packet losses. 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  38/64 

Unidirectional censoring of rapid nodes’ transmissions 

One first goal is to mitigate error propagation while updating nodes locations. As previously 

mentioned, it has been illustrated in [HDR_SENS12] that the locations estimated for the most 

rapid nodes are affected by significantly higher errors in comparison with slower nodes. 

Hence, we propose to allow only the update of such fast nodes with respect to their 1-hop 

neighbors but no updates of these neighbors with respect to the fast nodes in return, i.e. 

performing some kind of unidirectional censoring. The expected gains are two-fold: keep on 

benefiting at rapid nodes from the reliability of their slow neighbors’ estimates, but also 

improve the average location accuracy in the entire network by avoiding error propagation 

from less reliable rapid nodes. The unidirectional censoring of any rapid node j would be 

practically applied by forcing the weight function wij(t) to be null with respect to any 

neighboring on-body node i (i.e. wij(t) = 0, ∀j ≤ n whereas wji(t) ≠ 0). 

Scheduling of location updates 

The objective here is still to avoid error propagation, by forcing the algorithm to converge 

properly first after updating in priority the slowest and most reliable nodes. Hence, rapid 

nodes benefit from the consolidated reliability of their slow neighbors’ estimates and error 

propagation is minimized. Practically, within a coordinated medium access scheme of the 

multiple on-body nodes as it will be seen hereafter, where all the protocol transactions shall 

be scheduled (i.e. for both range measurements and position updates), one can keep track of 

the approximated dynamic speeds on the coordinator side, based on the latest available 

position estimates. Hence, at each new time stamp (and hence, at each superframe), one can 

draw such an ordered list setting the nodes to be updated in priority. Finally, one more degree 

of freedom concerns the number of updates per node per localization cycle (i.e. per 

superframe) or equivalently, the refreshment rate, which can be also dynamically increased 

for the most demanding nodes. 

Forced measurements symmetry 

The objective here is to jointly mitigate measurement outliers and packet losses. Hence, we 

propose to force the distance measurements for each pair of nodes into being symmetric, as 

follows: 
 

 
 

Practically, once the peer-to-peer range measurements between two nodes i and j are 

recovered independently in both directions (i.e. δij(t) or δji(t)), our proposal consists in sharing 

the related information between each pair of nodes in order to mitigate possible packet losses 

(and thus missed measurements) that may occur during the ranging transactions. Moreover, 

if we suppose that the distance observed by node i from node j is strongly affected by 

measurement noise and/or bias (i.e. δij(t)) but that the distance observed by node j is less noisy, 

outliers are mitigated or more generally speaking, the resulting measurement variance is 

divided by a factor 2 after averaging. 
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• Supporting Medium Access Control (MAC) for localization-enabled WBAN 

In our WBAN localization context, one key feature of the Medium Access Control (MAC) is to 

enable ranging between the nodes, as well as further exchanges of any kind of location-

dependent information. In [MDEO_09] a first beacon-aided TDMA superframe has been 

presented, which was adapted for WBAN applications running on the IEEE 802.15.4 radio 

standard. Figure 4.7 represents the MAC superframe used in [BHMDO_10] (and directly 

inspired from [MDEO_09]) adapted for localization purposes. In our work, we also consider 

using this MAC superframe. As shown in Figure 4.7, the superframe structure is delimited by 

a beacon, which is transmitted periodically by the coordinator (e.g. possibly one on-body 

anchor here) to all the nodes in order to resynchronize all the WBAN (i.e. indicating the 

beginning of the superframe). The beacon fully describes the MAC superframe, specifying in 

particular the Time Slots (TSs) allocated for each transmitting node. The Contention Access Period 

(CAP) is devoted to contention based transmissions, while the Contention Free Period (CFP) is 

composed of Guaranteed TSs (GTSs) allocated by the coordinator. During the inactive period, 

the nodes may enter in a sleep mode to reduce energy consumption. The peer-to-peer range 

information is usually based on Round Trip - Time of Flight (RT-ToF) estimation, which relies 

on 2-Way Ranging (2-WR) or 3-Way Ranging (3-WR) handshake protocol transactions and 

unitary ToA estimates for each involved packets [MDPPO_08]. Two guaranteed TSs are 

involved in the simplest case of 2-WR protocol to deliver a peer-to-peer range measurement 

between two nodes i and j, where node i sends its request packet. Once this packet is received 

by node j, the latter sends its response back to the requester node i inside its own dedicated 

TS, after a known reply time. In turn, node i will receive this response packet and the raw 

estimated RT-ToF through 2-WR can be computed out of the time perceived at i between the 

initial request transmission and the reception of the response on the one hand, and the time 

perceived at j between the reception of the request and the transmission of the response. One 

enhancement to the 2-WR protocol consists in forcing the responder node j to transmit an 

additional packet inside a third TS, in order to estimate and compensate the relative clock drift 

between the two nodes. This packet will be received by node i, leading to a 3-WR protocol. 

These protocol transactions are somehow generic and shall not be restricted to on-body 

ranging of course (e.g., they will be also considered in the following for IR-UWB ToA-based 

ranging over off-body and body-to-body links).  

 

Besides the local timers associated with unitary ToA estimates and required to compute range 

measurements, the payload of the ranging packets are actually exploited to carry additional 

information (e.g. to collect local estimated positions to the coordinator for synchronous 

display, to exchange pair-wise ranges in case of forced measurements symmetry, etc.). 

 

Finally, it shall be also noted that the initial on-body protocol described above is currently 

optimized in CORMORAN in the frame of Task T3.1. New proposals should be made 

accordingly by the end of the project to provide even better support to the on-body localization 

functionalities. 
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Figure 4.7: Initial beacon-aided TDMA MAC superframe format supporting localization 

functionalities, adapted from [MDEO_09]. 

 

• Performance evaluation 

Tested scenario and simulation set-up 

In our evaluation framework, human mobility is based on a mixed model, like in [MDEO_09]. 

A first macroscopic mobility Reference Point Group Mobility model (RPGM) accounts for the 

body center mobility, where the reference point as a function of time is a Random Gauss Markov 

(RGM) process [BHMDO_10]. The intra-WBAN mobility pattern is based on a biomechanical 

cylindrical model [P_05]. The body extremities are modeled as articulated objects, which 

consist of rigid cylinders connected to each other by joints. A snapshot of the resulting 

articulated body under pedestrian mobility is represented in Figure 4.8 at an arbitrary time 

stamp. The biomechanical model enables the generation of true inter-node distances, whatever 

the time stamp. 

For each random realization, the reference body moves in a 20m × 20m × 4m 3D environment 

with a constant speed of 1 m/sec for a duration of 80 sec. The network deployment is similar 

to that presented in Figure 4.6, where 5 anchors are positioned at fixed locations relatively to 

the LCS and 10 blind mobile nodes with unknown positions must be positioned. 

Regarding the physical radio parameters, we assume in first approximation that the received 

power is larger than the receiver sensitivity, enabling peer-to-peer communication links with 

a worst-case Packet Error Rate (PER) of 1 %, as specified by the IEEE 802.15.6 WPAN Task 

Group 6 [UMA_13]. This PER figure is applied onto 3-way ranging protocol transactions to 

emulate incomplete ranging (i.e. whenever 1 packet is lost out of 3). Inspired by the ToA-based 

IR-UWB ranging error model from section 3.1 and [HDER_ACM13], which has been specified 

in the IEEE 802.15.6 mandatory band centered around 4 GHz with a bandwidth of 500 MHz, 

ranging errors are added depending on the current LoS or NLoS channel configuration at time 

stamp t, as follows: 
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where )(
~

tdij  and )(tdij  are respectively the measured and the real distance between nodes i 

and j at time t, nij(t) is a centered Gaussian random variable with a standard deviation σ, and 

bij(t) is a bias term due to the absence of direct path when estimating ToA. 

 

 

 
 

Figure 4.8: Biomechanical mobility model based on a piece-wise cylindrical representation, used in 

the generation of realistic inter-node distance measurements under body mobility. 

 

Simplifying the model from section 3.1, our first simulations are carried out using a synthetic 

and constant σ equal to 10 cm, independently of the Signal to Noise Ratio SNR(t), but still in 

the range of the values observed out of real measurements in section 3.1. The random positive 

bias bij(t) is added only into NLoS conditions and follows a uniform distribution in the interval 

[0, 10] cm. Moreover, this bias is assumed constant over one walk cycle in first approximation 

(i.e., bij(t) = bij, ∀t), which is also in compliance with first empirical observations from section 

3.1 with dynamic links over NLoS portions (i.e. with reproducible bias from one walk cycle to 

the next). 

 

Concerning the setting of the CDWMDS algorithm, three fixed-link constraints are imposed, 

as materialized with black lines in Figure 4.6. We also assume that the weight function wij(t) is 

equal to 1 in connectivity conditions and 0 when the nodes i and j are disconnected, regardless 

to neighbor’s information reliability (i.e. with no soft weighting under connectivity). The 

variable r i(t) associated with the prior estimated position of the current mobile node is taken 

equal to 1 like in [CPH_06] for simplification. As for the LMDS algorithm, a complete matrix 

is required with all the distances between all the pairs of nodes. Thus, inspired from the coarse 

geometric constraints used in section 4.1.1 and [MLU_ WPNC12], which rely for each link on 

the prior knowledge of minimal and maximal feasible distances under radio connectivity. We 

then substitute the missed distances δij (t) by random variables, which follow a uniform 

distribution in the interval )](max),(min[ tdtd ij
t

ij
t

. Localization is investigated for both 

CDWMDS and LMDS algorithms, considering two approaches. The first one consists in 

updating the nodes positions with a systematic refreshment rate of 30 ms, whereas the latency 
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introduced by the exchanged packets is not taken into account. However, in a second and more 

realistic approach, we consider a TDMA MAC superframe similar to that presented in Figure 

4.7, where an Aggregate-and-Broadcast (A-B) procedure [MDPPO_08] is applied to ranging 

packets. Accordingly, under full connectivity, 3n + 2m transmission slots would be required to 

guarantee ranging transactions between any pair of nodes, instead of 2n(n + m − 1) otherwise. 

Such A-B procedures enable to share time resource in such a way that each node initiates 

specific ranging transactions with all the other nodes, and each transmitted packet can play 

different roles (i.e. either a request, or a response, or even a drift correction packet, depending 

on the receiving neighbor status and current step in the 3-Way procedure). 

 

Finally, additional simulations have been carried out in order to assess localization 

performance as a function of the PER and standard deviation σ of intra-BAN ranging errors.  

Localization performance 

After running simulations of the walk cycle with 100 independent realizations of the ranging 

errors based on the ToA estimation and PER, localization performance is assessed in terms of 

the average Root Mean Squared Error (RMSE) per node or for all nodes. Figure 4.9 shows the 

average RMSE (m) for each blind node placed on the body when applying no scheduling (i.e. 

random) of the locations’ updates. Blue bars then represent the localization performance of 

CDWMDS, when each measurement constraint is calculated as the mean of the measured 

distances in an observation window of 9 sec. Red bars show the average RMSE per node in 

CDWMDS using the unidirectional censoring relatively to the fastest nodes (i.e. 4 and 6). As 

shown in this figure, the unidirectional censoring may be efficient to improve the localization 

performance, decreasing the average RMSE per node from 23.3 cm down to 19.7 cm, what 

represents an improvement of 15.4 %. The effects of introducing scheduling in the sequence of 

location updates are also illustrated on Figure 4.10. Blue bars represent the localization 

performance of CDWMDS using our first enhancement but random scheduling for the update 

of nodes’ locations, whereas red bars account for situations when the slowest nodes are 

updated in priority and the fast nodes are updated later on (i.e. 4 and 6). The average RMSE 

(m) per node then decreases from 19.7 cm down to 17.5 cm, representing an improvement by 

11.1 %. Moreover the gain is mainly observed for the most poorly positioned nodes. Note that 

with location updates scheduling, the refreshment rate could be anyway adjusted depending 

on the local mobile speed in order to favor the most demanding nodes. Figure 4.11 shows the 

impact of forcing measurements Symmetry, while the blue bars represent the average RMSE 

per node using the CDWMDS algorithm with the two enhancements, whereas red bars show 

the localization performance when the distance measurements between nodes are forced to be 

symmetric. The average RMSE (m) per node decreases from 17.5 cm down to 15.5 cm, 

representing an improvement of 11.4 %. A comparison between LMDS and CDWMDS, with 

and without MAC superframe, is also provided on Figure 4.12 and Figure 4.13. Figure 4.12 

shows the variation of the average RMSE (over all the nodes) as a function of the PER. Blue, 

red and green curves represent respectively the localization performance of CDWMDS, 

CDWMDS under forced measurements symmetry and LMDS algorithms, while the dashed 

curves represent the corresponding RMSE with a realistic MAC superframe. As it can be seen, 
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for each tested PER value, CDWMDS outperforms LMDS, with and without superframe. 

Moreover, this figure shows the harmful effects of the latency induced by real MAC 

transactions, and in particular between the collection of measurements and the positioning 

step. The effect is all the more noticeable with centralized approaches like within MDS. In 

addition, it appears that forcing measurements symmetry is indeed an efficient way to mitigate 

packet losses, outliers or more simply high noise. Finally, localization performance is slowly 

degraded at high PER, most likely due to the jointly cooperative and decentralized nature of 

the proposed algorithm. Figure 4.13 shows the variation of the average RMSE for all the nodes 

as a function of the standard deviation of on-body ranging errors. As expected, the 

performance is rapidly and rather strongly degraded under larger and larger measurement 

errors. At high noise standard deviation (e.g. larger than 20 cm), we also observe that the 

latency effects introduced by the use of a realistic MAC superframe are minimized, 

experiencing approximately similar performances (i.e. between dotted and their 

corresponding continuous curves). The previous observation indicates that measurement 

errors are by far dominating in this case in comparison with latency effects, which could hence 

be neglected.  

 

In CORMORAN, in the frame of T4, the previous algorithm shall be used for the evaluation 

and demonstration of on-body relative positioning based on real IR-UWB devices. 

 

 
Figure 4.9: Average RMSE (m) per node with and without updates scheduling for σ = 10 cm and a 

refreshment rate of 30 ms. 
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Figure 4.10: Average RMSE (m) per node with and without updates scheduling for σ = 10 cm and a 

refreshment rate of 30 ms. 

 

 

 
Figure 4.11: Average RMSE (m) per node with and without Forced Measurements Symmetry, with 

σ = 10 cm and a refreshment rate of 30 ms. 
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Figure 4.12: Average RMSE (m) over all the nodes in the WBAN as a function of PER, with σ = 10 

cm. 
 

 
Figure 4.13: Average RMSE (m) for all the nodes in the WBAN as a function of the standard deviation 

of the ranging errors, with PER =0.01. 
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4.2. LOCATING ON-BODY NODES IN A GLOBAL COORDINATES SYSTEM 

4.2.1 2-STEP ALGORITHM WITH WITH DISTANCE APPROXIMATION OVER 

NEIGHBORHOOD GRAPH 

In this section, we now evaluate and compare different solutions to jointly fulfil indoor 

navigation and motion detection/capture needs over large-scale trajectories in the context of 

heterogeneous WBANs. On-body devices must be localized at the building scale by combining 

peer-to-peer range measurements over intra-WBAN links and further measurements with 

respect to external anchors forming the building infrastructure. More particularly, we consider 

using on-body wireless links in a mesh intra-WBAN topology, as well as off-body wireless 

links with respect to external elements of infrastructure, set as fixed anchors. Multi-standard 

wireless on-body nodes are thus required, being compliant with e.g., IR-UWB IEEE 802.15.6 

for intra-WBAN communications and IR-UWB IEEE 802.15.4a or IEEE 802.15.4 over larger-

range off-body links. The idea is that both on-body and off-body localization procedures could 

mutually benefit from each other, while preserving the finest precision of relative localization 

over large-scale trajectories, contrarily to the first cooperative localization attempt in 

[BHMDO_10], where the precision of relative localization at the body scale was degraded by 

the introduction of off-body links. IR-UWB and a 2.4 GHz NB technologies are assumed to 

provide respectively Time (Difference) Of Arrival (T(D)OA) estimates and RSSI. Different 

options and scenarios are thus compared in terms of location-dependent radio metrics, 

synchronization constraints and transmission ranges. In a first 2-step scheme, the positions of 

on-body nodes are preliminarily estimated in a body-strapped local coordinates system LCS 

before being expressed into an absolute global coordinates system GCS after a set of 

transformations. The second option considers localizing directly the nodes into the GCS using 

all the available measurements. Finally, we also propose a method to approximate 

measurements over obstructed/erroneous/missing links, by computing the shortest distance 

according to local graph neighborhood. On this occasion, we take advantage of the presence 

of multiple on-body nodes to mitigate body obstructions with respect to external anchors 

through distance approximations. 

 

We first assume a set of fixed anchor nodes placed at known positions in the indoor 

environment and forming the building infrastructure. These nodes will be also depicted as 

infrastructure anchors in the following. A second set comprises wireless devices placed on the 

pedestrian body. Just like in section 4.1.2, these devices are classified into two categories, 

namely simple on-body mobile nodes with unknown positions under arbitrary deployment 

and reference on-body anchors. The latter are attached onto the body at known and 

reproducible positions independently of the body attitude and/or mobility (e.g. on the chest 

or on the back). A set of such on-body anchors then define a stable Cartesian LCS, which 

remains unchanged and time-invariant under body mobility. 

 

Figure 4.14 shows a typical deployment scenario, where the LCS is obviously in movement 

and misaligned relatively to an external GCS. In the following, { }
aNi

ac
iX ..1= represents the set of 

the absolute 3D known positions of the Na fixed infrastructure anchors expressed in the GCS, 
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where Na should be equal or larger than 4. { } ni
a
i tX ..1)( =  and { } ni

r
i tX ..1)( =  represent respectively 

the absolute and relative 3D unknown positions of the n mobile nodes deployed on the body 

at time t, as respectively expressed in the GCS and LCS. Similarly, { } mnni
a
i tX ++= ..1)(  and 

{ } mnni
r
iX ++= ..1  represent respectively the absolute 3D unknown positions of the m on-body 

anchors at time t and their corresponding relative known positions (supposed to be time-

invariant), where m should be equal or larger than 4. Now let )(
~

tdij  be one range or pseudo-

range measurement available at time t between one on-body node i and a connected node j, j 
being one on-body node, one on-body anchor or one infrastructure anchor, and let l ij be a 

constant distance (i.e. time-invariant over body mobility whatever the coordinates system), 

which will be considered hereafter as a constraint like in section 4.1.2 and [HDR_SENS12].  

 

 
Figure 4.14 : Typical heterogeneous deployment scenario for the absolute localization of on-body 

wireless nodes (i.e., similarly to Figure 4.6 but now including off-body links w.r.t. external 

anchors). 

 

Given the set { })(
~

tdij  of all the available measurements at time t, e.g. based on IR-UWB ToA 

estimation between cooperative on-body devices or between on-body nodes and 

infrastructure anchors, on the known locations of on-body anchors and infrastructure anchors, 

the problem that we want to solve consists in estimating the absolute positions of the on-body 

nodes in the GCS. 
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• Proposed 2-Step LSIMC approach 

 

 
Figure 4.15 : 2-step LSMIC algorithm. 

 

 

1) 1-st Step: The idea is to start the LSIMC procedure by localizing the on-body nodes 

relatively to the LCS, using cooperative peer-to-peer range measurements between 

pairs of devices. We propose to apply the CDWMDS algorithm described in section 

4.1.2, which is intended for relative on-body localization in the WBAN context. 

According to the new introduced formalism, each node localizes itself by minimizing 

a local cost function that depends on its neighborhood information, as follows: 

 

 

 
 

where )(ˆ tX r
i  contains the estimated 3D coordinates of node i in LCS available at time 

t, δij(t) is a so-called observed distance between node i and j at t, ( ))(ˆ),(ˆ tXtXd r
j

r
iij  

denotes the Euclidean distance between nodes i and j, which is built out of estimated 

coordinates in LCS, wij(t) is a weight value, which reflects the connectivity and the 

accuracy of the range measurements between nodes i and j at time t, )(tX r
i  is a vector 
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with prior information about the position occupied by node i at time t (here, 

)1(ˆ)( −= tXtX r
i

r
i  like in section 4.1.2), while r i(t) quantifies the reliability of this prior 

information. 

We also consider introducing fixed on-body links (e.g. links between hand’s wrist and 

elbow) as constraints into the positioning problem like in section 4.1.2. 

 

2) 2-nd Step: The second stage consists in converting the relative locations defined into 

the LCS to absolute locations into the GCS. This transformation of LCS includes a 

rotation and a translation. Whereas on-body anchors are time-invariant in the LCS 

under mobility, it is preferable to rely on those nodes to transform the LCS. In 3D 

environments, the absolute locations of at least 4 on-body anchors are needed to find 

the absolute locations of the other mobile nodes. Hence, we determine the absolute 

localization of the on-body anchors into the GCS first. Based on both known on-body 

ranges and range measurements with respect to external anchors, on-body anchors are 

localized through non-linear least squares optimization, by minimizing a new local 

cost function as follows: 

 

 
 

where )(ˆ tX a
i  is the vector of the estimated 3D coordinates of on-body anchor i into the 

GCS at time t, Na is the number of infrastructure anchors and δik(t) is the observed 

distance between on-body anchor i and infrastructure anchor k.  

 

Getting back to our initial aim of localizing on-body nodes into the GCS, the absolute 

coordinates can be obtained out of the relative coordinates into the LCS after a few 

transformations (i.e. rotation and a translation), which can be represented as follows: 

 

 
 

The goal now is to estimate the rotation matrix )(tA  and the translation component 

)(tb out of noisy observations, by minimizing the difference in the least squares sense 

between the absolute locations of on-body anchors and the corresponding versions, 

which are obtained through the transformation of estimated relative positions. For a 

given on-body anchor l, we set [ ])(),...,(),(),...,()( 111 tXtXtXtXtX r
mn

r
l

r
l

r
n

r
++−+ ∆∆∆∆=∆  

and [ ])(),...,(),(),...,()( 111 tXtXtXtXtX a
mn

a
l

a
l

a
n

a
++−+ ∆∆∆∆=∆ where )()()( tXtXtX r

l
r
i

r
i −=∆  
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and )()()( tXtXtX a
l

a
i

a
i −=∆  for l ≠ i. The alignment problem can therefore be 

formulated as a least-squares optimization problem, as follows: 

 

 
 

The analytical solution of this linear least-squares problem is given by 

( ) ( )( ) 1

)()()()()(ˆ
−

∆∆∆∆= TrrTra tXtXtXtXtA . Finally, the absolute locations of all the on-body 

mobile nodes in the GCS are derived from their corresponding relative versions in the LCS, as 

follows:  

 

• Direct single-Step LSIMC approach 

The idea here is to compute directly the positions of on-body mobile nodes in the GCS, by 

combining simultaneously all the available measurements, which can be performed between 

on-body devices or with respect to infrastructure anchors. Accordingly, the cost function to be 

minimized by each on-body device i is rather similar to previously but now incorporates also 

cooperative distance measurements between on-body devices, as follows: 

 

 

 

• Distance reconstruction over neighborhood graphs 

A graph is usually considered as a collection of vertices (or nodes) and edges (or distances) 

that connect pairs of vertices. In the very WBAN localization context, we assume that the on-

body devices and infrastructure anchors form such a graph. The edges, which can be weighted 

by the observation distances, then reflect connectivity between the different entities. So as to 

mitigate link obstructions, we propose to reconstruct the graph based on connectivity and 

measurement information, by computing the shortest distances over neighborhood graph. The 

idea is to start by initializing the weight of an edge between nodes i and j by the observation 

distance )(
~

tdij  in case of connectivity, and by infinity otherwise. In a second step, we replace 

each weight (i.e. distance) by the shortest path separating the graph nodes in the local 

neighborhood by updating the input distance by 




 += −−−+ 22 )(

~
)(

~
),(

~
min)(

~
tdtdtdtd kjikijij . 
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We thus adopt a “triangular” approximation 22 )(
~

)(
~ −− + tdtd kjik  instead of e.g., a linear one 

)(
~

)(
~ −− + tdtd kjik . This choice indeed appears more adaptable to the deployment of on-body 

devices (i.e., 2 on-body devices and an infrastructure anchor are most likely not aligned but 

form a triangle). Figure 4.16 shows an example for a graph having 4 nodes, with the initial 

graph exhibiting a disconnection between node 1 and 4 and its reconstructed version based on 

the shortest observed path. Our proposal, which performs distance estimation over 

neighborhood graph, generally leads to an important reduction of the ranging errors affecting 

the measured distances (e.g. outliers), and more noticeably in NLoS conditions caused by body 

shadowing. Moreover, missing distances under partial connectivity are approximated 

whenever one path has been found. 

 

 
Figure 4.16 : Example of distance estimation over neighborhood graph left. The blue graph 

represents the initial graph based on the observation distances and connectivity information. The 

black graph is reconstructed based on the calculation of the shortest paths. The Right graph shows 

a reconstructed distance through the triangular and linear estimators. 

• Performance Evaluation 

Tested scenario and simulation set-up 

Just link in section 4.1.2 and [MDEO_09], in this new evaluation framework, human mobility 

is still based on a mixed model. The macroscopic model accounting for the body center 

mobility (with a reference point following a RGM process [BHMDO_10]) is coupled with a 

biomechanical cylindrical-based model. Body extremities are still modeled as articulated 

objects, which consist of rigid cylinders connected to each other by joints.  

 

In our scenario, for each new random realization, the reference body moves in a 20m x 20m x 

4m 3D environment with a constant speed of 1m/sec for 80sec. The scene is surrounded by 8 

infrastructure anchors set at the corners. The network deployment is similar to that presented 

on Figure 4.14, with 5 on-body anchors and 10 blind on-body nodes.  

 

Concerning the physical radio parameters, we differentiate intra-WBAN and off-body links. 

We first assume IR-UWB on-body radio links, as recently promoted by the IEEE 802.15.6 
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standard. We also consider that the received power is larger than the receiver sensitivity, 

which allows peer-to-peer communications with a worst-case PER of 1%, as specified by the 

standard. This PER figure is applied to each single packet involved in 3-way ranging protocol 

transactions within the same TDMA access scheme as previously [MDEO_09], thus now 

emulating incomplete ranging transactions (i.e. whenever at least one packet is lost out of 3) 

contrarily to section 4.1.2.  

 

Regarding on-body ToA-based IR-UWB, we consider the same conditional error model and 

parameters as that in section 4.1.2. As for off-body links between on-body devices and 

infrastructure anchors, radiolocation measurements can be delivered through IR-UWB ToA or 

NB RSSI estimation. In case of IR-UWB (e.g. according to the IEEE 802.15.4a standard), the 

conditional ToA-based ranging error model is again similar to that of section 4.1.2, but noise 

parameters have been adjusted according to [BHMDO_10], as reported in Table 4.3. NLoS 

conditions are assumed to be caused uniquely by body shadowing here (dominating effect).  

 

Regarding NB RSSI-based ranging (e.g. according to the IEEE 802.15.4a standard in the band 

centered around 2.4GHz), inspired by the off-body channel model in [RE_12] and section 3.2, 

which has been specified in the ISM band (i.e. at 2.45 GHz), the path-loss model used in our 

simulations is simplified by eliminating fast fading components (i.e. considering that one 

would average over a sufficient number of consecutive RSSI readings per link in a real system), 

as follows: 

 

 
 

where PL(d) is the path-loss in dB between two devices separated by a distance d, PL0 

represents the path-loss in dB at a reference distance d0 = 1 m, n is the path-loss exponents and 

S represents the body shadowing. Simplifying further, we also suppose that S is normally 

distributed with zero mean and standard deviation σS = 2 dB.  

 

Table 4.4 summarizes the parameters from [RE_12] and section 3.2 for WBAN planar 

monopole antennas and two different specific links. Note that the RSSI radiolocation metrics 

will be integrated only in the 2-step localization scenario, where the infrastructure anchors are 

just connected to on-body anchors. We have classified those links into two different sets 

depending on the locations of their involved on-body nodes. Generalizing the model in 

[RE_12], the two sets of links are thus associated with the same channel parameters as that 

observed for an antenna placed either on the heart or on the left hip. The estimated distance is 

finally extracted from RSSI readings using the Maximum Likelihood (ML) estimator proposed 

in [LAU_09].  

 

Finally, concerning the localization algorithm setting, three fixed-length link constraints are 

imposed to the CDWMDS algorithm a priori like in section 4.1.2, as materialized with black 

lines in Figure 4.14. We also set wij(t) = 1 in connectivity conditions and 0 otherwise, regardless 
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to neighbor’s information reliability (i.e. with no soft weighting under connectivity) and r i(t) = 

1 for simplifications. Finally, localization updates are realized in average with a refreshment 

rate of 30 ms. 

 

 
Table 4.3: TOA-based ranging error parameters over indoor off-body IR-UWB links, according to 

[BHMDO_10] 

 
Table 4.4: RSSI/path loss model parameters over indoor off-body NB links at 2.45GHz, according to 

[RE_12] 

Simulation Results 

Based on the previous models and settings, simulations have been carried out to illustrate and 

compare the LSIMC performances of both single- and 2-step localization approaches. We have 

also considered several options for off-body links (in the latter 2-step embodiment), integrating 

different radiolocation metrics, namely ToA, TDoA and RSSI. Moreover, additional 

simulations aim at illustrating the benefits from estimating the distances over neighborhood 

graph in order to mitigate obstructions and too large measurement errors. Running trials of 

the walk cycle with 100 independent realizations of measurement error processes, the RMSE 

has been characterized for each on-body mobile node. As shown on Figure 4.17, mostly due to 

severe obstructions and partial connectivity conditions, the performances of the standard 2-

step RSSI-based and 1-step ToA-based approaches look rather poor and definitely not 

compliant with the requested LSIMC level of precision, even if the ToA-based option seems 

slightly better. However, based on IR-UWB ToA estimation over off-body links (i.e. ToA or 

TDoA) in the 2-step approach, rather clear gains can already be observed in comparison with 

the single-step approach, even though the resulting average precision would be mostly 

interesting to navigation application and still meaningless for LSIMC, with an average RMSE 

over all the on-body nodes respectively equal to 1.1 m and 1.2 m using the ToA and TDoA 

metrics over off-body links, hence justifying further enhancements.  

 

On Figure 4.18, we show similar results with the additional distance estimation technique, 

which consists in identifying the shortest distance over neighborhood graph. The average 

RMSE per node is then decreased from 1.1 m down to 0.31 m, leading to a significant 

improvement by 72 %. On the one hand, comparable levels of precision are now achieved for 

absolute on-body localization at the building scale in comparison with the best performance 

of relative on-body localization at the body-scale in section 4.1.2 and [HDR_ACM13]. On the 

other hand, penalized nodes located at the body extremities, which classically suffer from 
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lower connectivity, poor geometric dilution of precision and higher accelerations (e.g. nodes 

4, 6, 9 and 11 in our example), now seem to enjoy better robustness in comparison with other 

nodes. Considering relaxed deployment constraints and the claimed WBAN low 

consumption, these results could make this LSIMC solution a reasonable alternative to costly, 

power greedy and geographically restricted technologies, at least in applications requiring 

coarse positioning (e.g., gesture-based remote control or attitude/mobility detection).  

 
Figure 4.17 : RMSE of estimated locations per on-body node (ID) with both single and two-step 

LSIMC based on TOA, TDOA and RSSI metrics over off-body links. 

 

 
Figure 4.18 : RMSE of estimated locations per on-body node (ID) with two-step LSIMC based on 

TOA metrics over off-body links and distances estimation over neighborhood graph. 
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5. PRELIMINARY INSIGHTS ON RSSI-BASED COOPERATIVE 

NAVIGATION IN TYPICAL WBAN INDOOR CONTEXTS 

Concerning the Inter-WBAN links, as a preliminary step of investigation in this section, we 

first suppose that the transmissions will use a narrowband technology rather than IEEE 

802.15.6 over an UWB channel. This may be the case e.g., if the on-body nodes must be really 

lightweight and inexpensive and thus, if they do not include necessarily ranging-enabled 

sensors based on RT-ToF and multiple-way protocol transactions. Accordingly, we choose to 

focus on RSSI readings as input metrics, which are provided by default by communication 

interfaces. However, as already discussed in section 3.2, these metrics are notoriously known 

for providing imprecise ranging (especially at larger transmission ranges like over off-body 

and body-to-body), and are therefore of limited interest for localization at first sight.  

 

We however wished first to evaluate in a more general way which level of localization was 

achievable in a typical indoor environment using only these metrics. To this extent, we 

conducted our own measurement campaign using IEEE 802.15.4 nodes and studied the 

variations and the correlation of the signal level indicators received by a single node from a 

set of other nodes.  

 

These measurement campaigns confirmed that the log-normal shadowing approximation 

modeling signal attenuation is not too unrealistic. As repeatedly mentioned before, this model 

relates the path loss between an emitter and a receiver PL(d), expressed in dB, to the distance 

d that separates these two nodes according to: 

 

 
 

where PL(d0) is the path loss measured at a reference distance, which usually depends on the 

electronics and on the emitter and receiver design, η is the attenuation factor of the 

environment and �(0, σ2) is a random variable following a normal distribution with average 

0 and standard deviation σ. In most of our experiments, as the transmission power is fixed to 

0 dBm, the RSSI is simply the opposite of the path loss, that is to say, RSSI(d) = -PL(d).   

 

Besides the normal distribution assumption, the relationship with distance varies according to 

the attenuation factor of the environment, which should be almost constant for close nodes. 

However, it turns out that the latter assumption is, in a general setup, not fully realistic. 

Indeed, experimental results show that for a given receiver, if the attenuation factor does not 

usually vary significantly from emitter to emitter, there are, from time to time, one or a few 

emitters whose measurements are not coherent with the others. We will call the sources of 

these incoherent measurements aberrant nodes in the rest of this paragraph. Aberrant nodes 

are inevitable in an indoor environment, due to multipath propagation essentially. The 

problem introduced by the presence of such aberrant nodes is that, in a parameter estimation 

algorithm such as maximum likelihood estimation, the η term should be different for each 

source, which increases the number of variables to estimate drastically.  
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We therefore explored the possibility to exclude one or a few sources from the estimation 

based on their effect on the general likelihood and replacing them by a bias, constant, term. 

We first examine the case of the exclusion of a single emitter from the set of emitters used by 

the mobile node for localization if the mobile node considers that the associated measurements 

do not improve localization accuracy. We select the aberrant emitter by comparing the global 

likelihood values obtained when each emitter is ruled out. This method requires deploying 

more emitters that strictly needed by trilateration (i.e. to deploy at least 4 emitters in two 

dimensions). 

 

Let us denote by RSSIj,L the j th RSSI sample measured by the mobile node on packets coming 

from a given emitter L. If we denote by PLL(d0), ηL and σL the log-normal shadowing model 

specific parameters for emitter L, we can rewrite the equation above in the general case, 

replacing measurements coming from a given emitter O by a constant bias, β, as follows: 

 

 
 

where dL is the distance to emitter L that we try to estimate and δ is the indicator function 

(equal to 1 when the subscript expression is true, to 0 otherwise). 

 

Combining all the measured values altogether, we can apply a maximum likelihood estimator 

on this new model to compute the likelihood expressions in the case where emitter O is 

considered as abnormal. If we denote by NL the number of samples received from emitter L, 

the likelihood function is expressed as follows for every emitter L ≠ O: 

 

 
 

And for the outlier emitter, O, it becomes: 

 

 
 

The global likelihood function, reflecting the coherence of the whole system when emitter O is 

excluded from the data set is then simply the sum of the previous expressions over the K 

emitters: 
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This equation can be written with each of the K emitters considered as outlier. We are then 

able to select which emitter will be considered as biased by computing the likelihood function 

for each of the K+1 situations. We then place ourselves in the situation that achieves the 

maximum likelihood, replace the selected emitter by a biased emitter if any, and compute the 

positions and the bias according to the following equation: 

 

 
 

In the equation above, the LL(x,y) terms does not depend on β while the LO(β) term neither 

depends on x or on y. Therefore the likelihood equation can be solved by separating variables. 

The expression of the bias that maximizes LO(β) is straightforward: 

 

 
 

If we also consider the case in which no emitter is considered abnormal, we get K+1 likelihood 

values to compare. We then have to select the situation that yields to the best (i.e., highest) 

likelihood value to identify the most aberrant emitter. Experimental results show that 

sometimes the best likelihood corresponds to the situation in which no emitter is ruled out.  

 

As mentioned above, there are cases in which it would be profitable to exclude more than one 

emitter. To study the pertinence of such an Extended Biased Maximum Likelihood Estimation (xB-

MLE), we first examine the achieved accuracy when excluding two emitters, then three 

emitters in our various experimental setups. When more than one emitter is excluded, each set 

of measurements is replaced by a distinct bias. This allows to keep the same maximization 

method as above, separating variables for the optimization. For example, in the case we 

consider two emitters, O1 and O2, for exclusion, the global likelihood function is expressed as: 

 

 
 

Nevertheless, this process does not scale. If excluding one emitter requires K+1 maximization 

operations, excluding two emitters requires a number of maximizations equal to: 

 

 
 

In order to reduce this global complexity, we derive a heuristic based on the computation of a 

bias gap, defined as the relative difference between the bias and the estimated average path 

loss. This heuristic is the corrected extension of B-MLE namely B-MLEC (Biased Maximum 

Likelihood Location Estimation extension Correction) and expressed as follows: 
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This value is computed based on the previous bias expression and hence induces a relatively 

low computational cost. We then compare this value with a threshold, γ, and when BL ≥ γ, 

emitter L is considered as abnormal. In the same way if BL ≤ γ, the emitter of index L is 

considered as normal. In the end, we only have one maximization operation to perform, as we 

can ignore all emitters that do not satisfy this condition. For the present paper scenarios we 

empirically chose γ = 0.05, as this value corresponds to a generally admitted rejection 

threshold. To confirm this threshold, we evaluated the performance of our algorithms with 

different threshold values (ranging from 0.004 to 0.7). Figure 5.1 represents the average 

localization error achieved by B-MLEC in our three testbeds and shows that error increases 

from a threshold value of 0.1. The best value varies with the testbed, but 0.05 seems a fair 

choice. 

 

 
 

Figure 5.1: Influence of the rejection threshold on the average positioning error 

 

These algorithms were evaluated on three different testbeds. The full results and their 

analysis will be available in [DCTMC_13] but are beyond the scope of this deliverable. 

Figure 5.2 represents an example of the median localization error of the different methods 

in a particular scenario.  

 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  59/64 

 
Figure 5.2: Median and standard deviation of various algorithms in a representative scenario 

 

In this scenario, the difference between the various approaches show a slight advantage of the 

methods that exclude one or few emitters with respect to the classical ML estimator, or to the 

threshold-based approach (B-MLEC). However, that is not always the case and that is exactly 

the difficulty in implementing these approaches. Indeed, the algorithm that gives the best 

performance is not always the same and the criteria that allows selecting the appropriate 

approach is unclear at the time this report was written. Secondly, we can see that these 

methods improve the localization accuracy, but the gain is not so important so far. In the 

CORMORAN context, those techniques may help at least passing occasionally from an 

average accuracy to a good accuracy.  

 

However in CORMORAN, the inter-WBAN scenario is slightly different from the scenario 

addressed in this first evaluation. Indeed, an arbitrary node belonging to a given WBAN is 

supposed to receive beacons from several nodes belonging to close cooperating WBANs or 

eventually. The other nodes located in the same WBAN will also receive the same beacons 

with slight variations. Correlating the difference between the measurements from the different 

nodes on a given body with their relative position (assumed known a priori or retrieve through 

on-body positioning) is thus expected to greatly improve the localization accuracy. 
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6. CONCLUSIONS AND PERSPECTIVES 

In this deliverable, we have first characterized and discussed possible single-link ranging error 

representations, exploiting recent WBAN IR-UWB and 2.4GHz NB channel measurements 

over various kinds of cooperative links. These models rely on empirical direct modeling or 

theoretical predictions based on ranging performance bounds, both fed with realistic channel 

parameters. First of all, a dynamic on-body model has been proposed for IR-UWB ToA-based 

ranging in two key frequency bands and for two representative links. The drawn model, which 

relies on UWB channel measurements, takes into account dynamic channel obstruction 

configurations (i.e. LoS/NLoS) and SNR variations under body mobility. Then the related 

model parameters have been studied as a function of a controlled SNR within synthetic 

received multipath signals. On this occasion, false and missed detection phenomena have been 

illustrated under low SNR and NLoS conditions, as well as asymptotically ideal detection 

behavior under more favorable SNR and LoS conditions. The performances of first peak and 

strongest peak detection schemes have also been compared. We have shown that the ranging 

error distribution could be fairly well modeled as a centered Gaussian distribution in LoS 

conditions in case of systematic strongest path detection, and as a weighted mixture between 

uniform and Gaussian distributions in the case of first path detection. In NLoS conditions, 

ranging errors are also shown to follow a weighted mixture between uniform and Gaussian 

distributions in case of strongest path detection. Finally, a few insights have been provided for 

a possible extension of the previous error model to any on-body link, depending on its 

instantaneous LoS/NLoS and static/dynamic status. Then the model has been simplified, 

considering a Gaussian model, with a constant standard deviation independently of the SNR, 

but still in the range of the values observed over the walk cycle within the previous refined 

representation. Moreover, it has been assumed that the range measurements in NLoS are 

affected by a positive bias that follows a uniform distribution, which is also partly compliant 

with the previous NLoS representation. The resulting simplified model has been subsequently 

used to evaluate the performance of on-body localization algorithms for both relative and 

absolute individual MoCap purposes (See paragraphs below). Secondly, we have considered 

theoretical performance bounds for the standard deviation of NB RSSI-based ranging over off-

body and body-to-body links, relying on realistic path loss parameters extracted from real 

measurements. One first conclusion, as expected, is that RSSI readings in NLoS conditions due 

to body shadowing are not so informative for direct conventional ranging purposes on both 

kinds of links (i.e., unless specific mitigation techniques are implemented), whereas LoS 

conditions may provide more acceptable ranging performance, but most likely at short ranges 

(typically below 20 m). One second remark is that off-body and body-to-body links exhibit 

approximately the same behaviors in terms of ranging error statistics, in first approximation, 

highlighting the fact that body shadowing is a dominating factor. The underlying path loss 

and body shadowing parameters have been partly reused in simulations while evaluating the 

performance of localization algorithms for joint MoCap and single-user navigation 

applications. These first investigation lead to the following conclusions and perspectives: i) 

heuristic and a priori error models could be applied to improve on-body positioning (as seen 

in the following herein) and ii) further investigations are still required to better exploit the 

obstructed links (caused by body shadowing) with respect to external nodes (i.e., either off-
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body or body-to-body links). The latter point will be pursued in the frame of CORMORAN 

ST3.2 for the upcoming months.  

 

Besides, in this deliverable we have also described solutions addressing the problem of 

WBAN-based motion capture/detection. First of all, a LMDS algorithm was improved by 

means of a few heuristics about maximum and minimum observable range measurements at 

the body scale. Then one decentralized and cooperative version has been proposed, CDWMDS 

algorithm, which asynchronously estimates unknown nodes’ locations under geometric 

constraints in the form of fixed-length links. The latter has been also enhanced through 

scheduling and censoring to mitigate error propagation and harmful effects due to location-

dependent node speed disparities. It has been shown that forced measurements symmetry 

could help to mitigate outliers and packet losses as well. Moreover, CDWMDS has been 

compared with the initial centralized synchronous LMDS algorithm in terms of localization 

accuracy for various PER values and for various ranging standard deviations, assuming 

realistic MAC protocol constraints in line with the developments currently carried out in 

CORMOAN ST3.1, hence illustrating the harmful effects of latency and their possible 

mitigation. Given the remaining observed limitations however, it appears overall that only 

applications requiring relatively modest on-body accuracy level could be covered by the 

current radiolocation technologies (e.g., gesture-based remote control, attitude/mobility 

detection…), instead of MoCap applications in a standard meaning. But other efforts has also 

been committed to couple relative on-body localization with absolute indoor positioning (i.e. 

with respect to fixed external anchors distributed in the environment) and/or with tracking 

filters, then offering enriched, “opportunistic” (out of on-body data traffic) and geographically 

unrestricted (through absolute positioning) capabilities. 

 

Accordingly, we have jointly addressed the single-user navigation problem over large-scale 

indoor trajectories based on heterogeneous WBANs, out of preliminary on-body nodes 

positioning. Two approaches have thus been presented to estimate the absolute locations of 

on-body nodes in a global coordinates system before computing their barycenter (supposed to 

account for the overall body location), considering different radiolocation metrics over off-

body links with respect to infrastructure anchors. One 2-step solution relies on preliminary 

relative localization at the body scale and applies further transformations through the absolute 

localization of on-body anchors. Finally, we have proposed an algorithm that estimates the 

shortest path between on-body and infrastructure anchors over neighborhood graph to 

compensate for radio obstructions and large measurement errors. Future works in 

CORMORAN ST3.2 will concern extensions -to a larger extent- into cooperative navigation 

contexts involving groups of WBANs. 

 

Regarding the latter CGN applications, very preliminary RSSI-based measurement outliers (in 

turn, affecting off-body and body-to-body links) have been characterized based on indoor RSSI 

measurements. New methods based on several variants of global Maximum Likelihood 

criteria have been proposed to detect and discard aberrant measurements and replace the 

latter by constant biases. Those preliminary results indicate that the best selection strategy 
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clearly depends on the configuration of the testbed, and that the performance is improved 

w.r.t. classical maximum likelihood estimation in most cases, but still quite marginally. In the 

frame of T3.2 however, new studies regarding body-to-body and off-body cooperation in CGN 

applications have been recently initiated so as to better benefit from i) the natural redundancy 

provided by multiple on-body nodes with respect to external nodes, ii) low-complexity RSSI 

readings available by default over body-to-body and off-body links (but poorly informative in 

terms of ranging/localization so far), iii) even more advanced link/measurement selection 

strategy, thus opening the floor to contextual cooperation. 

 

The last version of the deliverable (D3.5) will account for these new investigations in details. 

Besides, some of the previous algorithms will be evaluated by means of real field experiments 

in the frame of T4, based on a hardware demonstrator. 

7. REFERENCES 

[CORMORAN_D1.1] C. Goursaud, B. Denis, et al., “Application Scenarios, System 

Requirements and Prior Models”, Deliverable D1.1 of CORMORAN, July 2012 

[HDER_ACM13] J. Hamie, B. Denis, R. D’Errico, C. Richard, “On-Body TOA-based Ranging 

Error Model for Motion Capture Applications within Wearable UWB Networks”, to appear in 

Journal of Ambient Intelligence and Humanized Computing, ACM/Springer 

[HDER_BOD12] J. Hamie, B. Denis, R. D’Errico, and C. Richard, “Empirical Modelling of Intra-

BAN Ranging Errors Based on IR-UWB TOA Estimation”, International Conference on Body 

Area Networks 2012 (BodyNets’12), Oslo, Sept. 2012 

[HS_PhD_10] H. Shaban, “A novel highly accurate wireless wearable human locomotion track-

ing and gait analysis system via UWB radios,” PhD thesis, Virginia Polytechnic Institute and 

State University, 2010 

[SENB_10] H. Shaban, M. El-Nasr, and R. Buehrer, “Toward a highly accurate ambulatory 

system for clinical gait analysis via uwb radios,” IEEE Trans. on Information Technology in 

Biomedicine, 14(2):284{291, March 2010 

[EO_09] R. D'Errico and L. Ouvry, “Time-variant BAN Channel Characterization,” Proc. IEEE 

PIMRC’09, pp. 3000-3004, 2009 

[DK_07] B. Denis and J. Keignart, “Post-processing framework for enhanced uwb channel 

modeling from band-limited measurements,” Proc. IEEE UWBST'03, Reston, Sept. 2003, 2007 

[DRBT_07] M. Di Renzo, R. Buehrer, and J. Torres, ”Ranging accuracy in uwb-based body area 

networks for full-body motion capture and gait analysis,” Proc. IEEE GLOBECOM'07, 

Washington DC, Nov. 2007 

[RE_12] R. Rosini and R. D'Errico, “Off-body channel modelling at 2.45 GHz for two different 

antennas,” Proc. EUCAP’12, pp. 3378-3382, 2012 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  63/64 

[REV_12] R. Rosini, R. d'Errico, and R. Verdone, “Body-to-body communications: a 

measurement-based channel model at 2.45 GHz”, Proc. IEEE Personal Indoor and Mobile 

Radio Communications (PIMRC 2012), pp. 1763-1768, 2012 

[DJMPVS_06] P. Drineas, et al. “Distance Matrix Reconstruction from Incomplete Distance 

Information for Sensor Network Localization,” Proc. IEEE SECON ’06, Sept. 2006. 

[RDGO_09] C. Roblin, et al. “Propagation channel models for BANs: an overview,” COST2100, 
TD(09)760, Braunschweig, Feb. 2009 

[MLU_ WPNC12] M. Mhedhbi, M. Laaraiedh, and B. Uguen, “Constrained LMDS Technique 

for Human Motion”, Workshop on Positioning, Navigation and Communication 2012 

(WPNC’12), Dresde, March 2012 

[GTGKMPS_05] S. Gezici Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, Z. Sahinoglu, 

“Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE 

Signal Processing Mag, 22(4):70–84, 2005 

[HDR_ACM13] J. Hamie, B. Denis, C. Richard, “Decentralized Positioning Algorithm for 

Relative Nodes Localization in Wireless Body Area Networks”, to appear in Journal on Mobile 

Networks and Applications (MONET), ACM/Springer, 2013 

[JH_PhD_13] J. Hamie, “Contributions to Cooperative Localization Techniques within Mobile 

Wireless Body Area Networks”, PhD thesis, Université de Nice Sophia-Antipolis, Nov. 2013 

[CPH_06] A. Costa, N. Patwari, O. Hero, “Distributed weighted multidimensional scaling for 

node localization in sensor networks,” ACM Transactions on Sensor Networks, 2(1):39–64, 

2006  

[HDR_SENS12] J. Hamie, B. Denis, and C. Richard, “Constrained Decentralized Algorithm for 

the Relative Localization of Wearable Wireless Sensor Nodes”, IEEE Sensors 2012 (IEEE 

SENSORS’12), Taipei, Oct.  2012 

[HDR_BOD12] J. Hamie, B. Denis, and C. Richard, “Nodes Updates Censoring and Scheduling 

in Constrained Decentralized Positioning for Large-Scale Motion Capture based on Wireless 

Body Area Networks”, International Conference on Body Area Networks 2012 (BodyNets’12), 

Oslo, Sept. 2012 

[MDEO_09] M, Maman, F. Dehmas, R. D’Errico, L. Ouvry, “Evaluating a TDMA MAC for 

body area networks using a space-time dependent channel model,” Proc. IEEE PIMRC’09, pp 

2101–2105, Sept. 2009 

[BHMDO_10] E. Ben Hamida, M. Maman, B. Denis, L. Ouvry, “Localization performance in 

wireless body sensor networks with beacon enabled mac and space-time dependent channel 

model,” Proc. IEEE PIMRC’10, pp 128–133, Sept. 2010 

[MDPPO_08] M. Maman, B. Denis, M. Pezzin, B. Piaget, L. Ouvry, “Synergetic MAC and 

higher layers functionalities for UWB LDR-LT wireless networks,” Proc. IEEE ICUWB’08, pp 

101–104, 2008 

[P_05] I. Pantazis, “Tracking human walking using MARG sensors,” Technical report, DTIC 

Document, 2005 



 

PROGRAMME 

INFRASTRUCTURES MATERIELLES ET 

LOGICIELLES POUR LA SOCIETE 

NUMERIQUE – ED. 2011  

 

  64/64 

[UMA_13] S. Ullah, M. Mohaisen, M. Alnuem, “A review of IEEE 802.15.6 MAC, PHY, and 

security specifications,” International Journal of Distributed Sensor Networks, 2013 

[LAU_09] M. Laaraiedh, S. Avrillon, B. Uguen, ”Enhancing Positioning Accuracy through 

Direct Position Estimators Based on Hybrid RSS Data Fusion,” Proc. IEEE VTC-Spring’09, 

pp.1-5, April 2009 

[HDR_WPNC13] J. Hamie, B. Denis, C. Richard, “Joint Motion Capture and Navigation in 

Heterogeneous Body Area Networks with Distance Estimation Over Neighbourhood Graph”, 

Proc. WPNC’13, Dresden, March 2013 

[DCTMC_13] N.A. Dieng et al. “No-calibration localization for indoor wireless sensor 

networks”, Int. J. Ad Hoc and Ubiquitous Computing, to appear in International Journal of Ad 

Hoc and Ubiquitous Computing. 


